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With meta-analysis, researchers transform statistical
tests of hypotheses into a common metric the ‘effect
size’. An effect size is ‘the degree to which the phenom-
ena is present in a population’ or ‘the degree to which
the null hypothesis is false’ (Cohen 1988, pp. 9-10).
One aim of meta-analysis is to calculate the average
effect size after weighting each estimate by its sampling
variance. Kotiaho and Tomkins (2002) (hereafter K&T)
recently suggested this procedure always yields the con-
clusion that the mean effect size is significantly different
from zero because of strong publication bias. Their
argument is based on Csada et al. (1996) who noted
that in 1201 papers only 8.6% of tests of the main
hypothesis concluded the effect was non-significant.
K&T (2002) illustrate their claim with an example.
They assume a true mean effect of zero and that nine of
every ten studies is significant due to publication bias.
They then conclude that the mean effect size must be
significantly greater than zero. This example is slightly
misleading because it exaggerates the problem posed by
publication bias. First, with a true mean of zero, signifi-
cant results are equally likely to be greater or less than
zero. So, in their example, even with publication bias
the mean effect size calculated from published studies
would be zero. One ‘paradox’ of publication bias, is
that it is most likely to inflate the estimate of the mean
effect when the true effect is small but non-zero (Palmer
2000). The real issue is thus the extent to which publica-
tion bias causes us to overestimate mean effect sizes.
More generally, type I error (a significant result when
the null hypothesis is correct) is only an index of the
extent to which overestimation occurs. For example,
would the mean effect still differ from the null hypoth-
esis if publication bias were taken into account? Usually
the null hypothesis is that the mean effect is zero, but it
need not be. Second, publication bias is sensitive to
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both P-values and sample size (Song et al. 2000, Palmer
2000, Mpoller and Jennions 2001). Significant results
based on small samples are published, while non-signifi-
cant ones are not. With reasonable sample sizes, how-
ever, even non-significant results are eventually
published. Meta-analysis gives greater weighting to
studies with smaller sampling variance (i.e. larger sam-
ple sizes). In their illustrative example, K&T (2002)
assumed all sample sizes were identical. This again
exaggerates the effect of publication bias. Unpublished
studies should have smaller sample sizes and therefore a
fairly weak effect on the weighted estimate of the mean
effect size.

We fully agree with K&T (2002) that publication bias
is a source of concern. We disagree with their statement
that “meta-analysis can not fail to provide an effect size
significantly different from zero”. The available data
supports our perspective.

How many published meta-analyses fail to reject the
null hypothesis that the mean effect is zero? We
counted up the number of tests of mean effect sizes that
were or were not significant in 47 published meta-analy-
ses in biology. We simply looked at the main summary
tables or figures. This was a cursory survey and we did
not concern ourselves with the lack of independence
between tests (e.g. we counted tests of groups A, B and
C and the test of ‘all’ (= A+ B + C) as four tests. We
also treated estimates calculated at the sample, study
and species level as independent tests). Of 831 estimates
of mean effect sizes, 512 were significant at the 0.05
level (62%) (Fig. 1). So, for what it is worth, meta-
analyses can, and do, ‘fail’.

Even if publication bias occurs, how strong an influ-
ence does it have on estimates of mean effects? Con-
cluding that publication bias makes meta-analyses
worthless is like concluding that measurement error
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Fig. 1. The number of tests of mean effect size that yielded an
estimate of the mean effect significantly different from zero
(P < 0.05) plotted against the total number of tests performed
(N =47 published meta-analyses). All points should fall on the
1:1 line if meta-analyses never fail to reject the null hypothesis
that the mean is zero.

makes fieldwork pointless. It depends on the magnitude
of the problem. Again, we can tackle this question
empirically. Jennions and Maeller (2002b) examined 40
subsets of data from 40 published meta-analyses in
biology. We estimated how many studies were missing
using the ‘trim and fill’ method of Duvall and Tweedie
(2000a, b). This method is based on detection of asym-
metry in plots of sample size against effect size (“funnel
plots”). To be conservative, we can assume studies are
missing solely due to publication bias. In fact, there
may be few or no unpublished studies as asymmetry in
a funnel plot can occur for several other reasons
(Thornhill et al. 1999). We corrected for potential pub-
lication bias by adding these ‘missing’ studies to the
actual data sets and then recalculated the mean effect
size. In 21% (8/38) of cases the weighted mean effects
were no longer significantly greater than zero. Clearly
this is cause for concern, however, it shows that the
problem of publication bias is neither insoluble nor
excessive. Rephrasing the finding, 79% of effect sizes
initially estimated to be significantly greater than zero
remained so even after correcting for publication bias.
So these biological relationships, while overestimated,
do appear to be genuine.

Even if Csada et al.’s (1996) statement that only 8.6%
of main results are non-significant is correct, it is worth
noting that many meta-analyses deal with data that is
not the key focus of the publication. Meta-analysts
know this only too well as they often struggle to track
down data buried in papers asking completely different
central questions. K&T (2002) argue that given only
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8.6% of findings are non-significant and estimates of
mean effect size rarely exceed r = 0.3 then, in the ab-
sence of publication bias, the true mean effect must be
close to r=1 for most hypotheses. They are implicitly
suggesting that publication bias is extremely strong (i.e.
there are far too few non-significant studies published if
true effect size are less than r = 0.3). This argument is
incomplete though. The likelihood of obtaining a sig-
nificant result (i.e. the power of a test) depends on the
true effect size and the sample size. They therefore need
to show that the average sample sizes in biology for the
tests reported by Csada et al. (1996) is such that
considerably more than 8.6% of studies should report
non-significant results assuming a true effect size of
r=x. To illustrate, if Csada et al’s 1201 tests all
examined the significance of Pearson’s correlations and
the true r = 0.50, then only 10% (120) will fail to report
a mean correlation significantly greater than zero (at
alpha = 0.05, two-tailed) if the sample size per study is
a modest n = 37. This does not differ from the observa-
tion of 103 non-significant studies (33 = 1.43, P = 0.23).
If the average sample size is greater than 37, the true
effect can be less than r = 0.5. For example, if the mean
sample size is 113 then a true effect of r =0.30 again
yields only 120 studies with non-significant results. We
are not disputing K&T’s (2000) argument that there is
probably a publication bias, only that they have over-
stated the problem by claiming the true effect must be
close to r =1 to account for the findings of Csada et al.
(1996).

Finally, we would like to make two more general
points. First, publication bias is a problem for any form
of review, including traditional narrative reviews. Nar-
rative summaries in individual papers or in reviews are
invariably more biased than meta-analyses because the
authors cannot possibly calculate effect sizes while tak-
ing sample size and heterogeneity among studies into
account. Thus, while meta-analyses may be biased, we
claim that narrative summaries are bound to be even
more biased. Unfortunately, publication bias has be-
come negatively linked with meta-analysis as a proce-
dure to synthesizing the literature. We remind readers
that most of the recent work looking at publication bias
in biology comes from researchers who support the use
of meta-analysis (Poulin 2000, Palmer 2000, Mgller and
Jennions 2001, Jennions and Mpller 2002a, b). Earlier
narrative reviews simply overlooked or ignored the
problem of publication bias. Second, meta-analysis in-
volves far more than just testing whether the mean
effect differs from zero. It is also about detecting corre-
lates of effect size and identifying factors leading to
among-group differences in effect sizes since these will
help to generate novel hypotheses and thereby advance
science. These heterogeneity and correlational tests may
be far less vulnerable to publication bias. In summary,
we believe that meta-analysis, like any other scientific
tool, is subject to errors and problems of application so
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that results should be interpreted with caution. But
even if publication bias does exist, the use of meta-anal-
ysis is still superior to traditional narrative reviewing
techniques.
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