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ABSTRACT

Recent reviews of specific topics, such as the relationship between male attractiveness to females and
fluctuating asymmetry or attractiveness and the expression of secondary sexual characters, suggest that
publication bias might be a problem in ecology and evolution. In these cases, there is a significant negative
correlation between the sample size of published studies and the magnitude or strength of the research
findings (formally the ‘effect size’). If all studies that are conducted are equally likely to be published,
irrespective of their findings, there should not be a directional relationship between effect size and sample
size; only a decrease in the variance in effect size as sample size increases due to a reduction in sampling error.
One interpretation of these reports of negative correlations is that studies with small sample sizes and weaker
findings (smaller effect sizes) are less likely to be published. If the biological literature is systematically biased
this could undermine the attempts of reviewers to summarise actual biology relationships by inflating
estimates of average effect sizes. But how common is this problem? And does it really affect the general
conclusions of literature reviews? Here, we examine data sets of effect sizes extracted from 40 peer-reviewed,
published meta-analyses. We estimate how many studies are missing using the newly developed ‘trim and
fill” method. This method uses asymmetry in plots of effect size against sample size (‘funnel plots’) to detect
‘missing’ studies. For random-effect models of meta-analysis 389, (15/40) of data sets had a significant
number of ‘missing’ studies. After correcting for potential publication bias, 219, (8/38) of weighted mean
effects were no longer significantly greater than zero, and 159, (5/34) were no longer statistically robust
when we used random-effects models in a weighted meta-analysis. The mean correlation between sample size
and the magnitude of standardised effect size was also significantly negative (r, =—0.20, P < 0.0001).
Individual correlations were significantly negative (P <0.10) in 359, (14/40) of cases. Publication bias may
therefore affect the main conclusions of at least 15-21 9, of meta-analyses. We suggest that future literature
reviews assess the robustness of their main conclusions by correcting for potential publication bias using the
‘trim and fill” method.
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VIII.

I. INTRODUCTION

The use of meta-analysis quantitatively to review a
field of study is increasingly popular in biology
(Arnqvist & Wooster, 1995; Moller & Jennions,
2001). Meta-analysis summarises the literature on a
topic by transforming statistical tests of hypotheses
into a common metric (‘effect size’). ‘Effect size’ is
‘the degree to which the phenomenon is present in
a population’ or ‘the degree to which the null
hypothesis is false’ (Cohen, 1988, pp. 9-10). Meta-
analysis allows for quantitative answers to questions
about the average strength of an hypothesised
relationship, or the extent and possible sources of
heterogeneity in research findings. It has clear
advantages over traditional narrative reviews but, as
with any review process, it assumes that the scientific
literature is unbiased. Ironically, the greater pre-
cision provided by meta-analysis has also prompted
biologists to question whether the scientific literature
really does accurately reflect the results of the many
studies biologists initiate (Csada, James & Espie,
1996; Bauchau, 1997; Alatalo, Mappes & Elgar,
1997; Simmons et al., 1999; Palmer, 1999; Poulin,
2000; for the medical literature see Song & Gilbody,
1998).

There are many forms of bias in the scientific
literature. Some are fairly innocuous such as pref-
erential citation of studies supporting the author’s
views, or by those of the same nationality (compre-
hensively reviewed by Song et al., 2000), or even a
tendency to cite more often authors with surnames
beginning with letters near the start of the alphabet
(Trengenza, 1997). Most troubling, however, is the
situation where the magnitude and/or direction of
research findings influences whether or not a
completed study is submitted, positively reviewed
and eventually accepted for publication. No mal-

Michael D. Jennions and Anders P. Moller

........................................................................ 214
........................................................................ 214

evolent intent to suppress findings is required to
generate a ‘publication bias’, only a systematic
prejudice at any stage of the publishing process
(Palmer, 2000; Song et al., 2000; Moller & Jennions,
2001).

The most widely cited prejudice of researchers,
reviewers and editors is towards statistically signifi-
cant results (Palmer, 2000; Song et al., 2000; Meoller
& Jennions, 2001). In practice, there is probably an
interaction between sample size and statistical
significance. For a non-significant result to be
published sample sizes must be large. This is
reasonable because the statistical power to detect a
significant difference is low when samples are small
(Cohen, 1988) so the null hypothesis of the absence
of an effect of a given magnitude (usually non-zero)
can not be accepted with a reasonable degree of
confidence. When a result is significant, however,
reviewers and editors often ignore sample size. This
is not a major problem if the true scientific
relationship being examined is close to zero. It
simply means there will be selective reporting of non-
significant findings from studies with small samples:
when the average relationship is calculated it will
still be close to zero. The real problem arises when
the true relationship is moderate (Palmer, 1999).
For studies with small samples, the only results
published will tend to be those that are significant in
the direction of the true effect (very few studies with
an estimated effect opposite in direction to the ‘true’
effect will reach significance). This can lead to a
systematic overestimation of the true effect size
(Begg, 1994).

Although biologists are now aware of the problem,
there has been no systematic attempt to determine
its extent (Moller & Jennions, 2001). Is publication
bias so severe that it grossly exaggerates the
biological significance of certain phenomena, even
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generating ‘collective illusions’? Palmer (2000) has
argued that this could be the situation, but did not
quantify the average effect of publication bias on
general conclusions. How widespread is the problem?
Ideally this question is resolved by obtaining
information on completed but unpublished studies
to see whether their inclusion alters the conclusions
of meta-analyses. Unpublished studies are, however,
extremely difficult to track down. There are several
ways to try to model and even to correct for effects of
publication bias (e.g. weighted distribution theory,
general linear models and Bayesian modelling)
(Begg, 1994; Gleser & Olkin, 1996). Unfortunately
though the models developed to date are not imple-
mented in readily available, user-friendly software;
they require restrictive assumptions about the exact
effects of probability values and sample sizes on
publishability; and they are only accessible to those
with advanced statistical modelling skills (DuMochel
& Harris, 1997).

In a survey of 44 ecological and evolutionary
meta-analyses, we identified a significant absence of
studies with small sample sizes that present findings
weaker than the weighted average effect size
(Jennions & Meller, 2002). In other words, we found
the mean correlation between sample size and the
absolute value of the effect size to be significantly
negative. Specific published examples of this pheno-
menon are given in the second paragraph of Section
I1.3. Publication bias is therefore a general phenom-
enon. Here, we use a new and simple method de-
veloped by Duvall & Tweedie (20004, b) called
‘trim and fill” to estimate the number of unpublished
or ‘missing’ studies. To our knowledge, the only
other study to use this approach to estimate the
potential impact of publication bias is an analysis by
Sutton et al. (2000a) of a set of meta-analyses of
clinical medical trials. According to them, the only
previous general statistical assessments of the preva-
lence of ‘missing’ studies in a collection of meta-
analyses was that of Egger et al. (1997). We then test
how robust general conclusions in biology are when
‘corrected’ for potential publication bias.

II. METHODS

(1) Data set

We made an extensive survey of the ecological and
evolutionary literature for meta-analyses published
up until the end of 2000. We examined the journals
American Naturalist, Animal Behaviour, Behavioral Ecol-
0gy, Behavioral Ecology and Sociobiology, Ecological
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Monographs, Ecology, Evolution, Evolutionary Biology,
Journal of Evolutionary Biology, and Quarterly Review of
Biology. We also entered the phrase ‘meta-analy™®’
into the electronic database ‘WebSpiris’ to find
papers where this term occurred in the title or
abstract. We then examined the title and place of
publication of each paper listed and directly in-
spected any that seemed related to evolutionary or
ecological biology. Furthermore, we contacted a
number of colleagues who have used meta-analyses
in their research to locate meta-analyses currently in
press. We excluded meta-analyses of genetic herita-
bilities because it is unclear whether 4* itself or an
effect size based on the strength (rather than slope)
of the phenotypic relationship between relatives is
the more appropriate effect size. Palmer (2000) has
already shown that the problem of publication bias
is especially severe for 4* because negative values are
biologically irrelevant and therefore under-reported.
We found 40 peer-reviewed meta-analyses where we
could also obtain effect sizes and variances for the
original studies (either because they were included as
appendices in the published paper or where the
authors kindly responded to our request and sent us
the data). The ability to detect unpublished studies
relies on the asymmetric distribution of effect sizes
(see below). Such asymmetry is unlikely to be
detected with smaller samples. We therefore set a
minimum sample size of eight studies per meta-
analysis (Sutton et al., 20002 used a minimum of 10).
This only removed one otherwise usable meta-
analysis (Fernandez-Duque & Valeggia, 1994). The
meta-analyses we used are listed in Section VIII.
Most of the 40 original meta-analyses asked several
different questions (i.e. examined several response
variables). In such cases, different response variables
were often taken from the same or a closely
overlapping set of original empirical studies. To be
statistically conservative, we limited our analysis to
one response variable per original meta-analysis
(that with the largest sample size). In addition, the
original authors often found significantly more
heterogeneity in effect size among studies than could
be explained by sampling error. They therefore
looked for underlying structure in the data by
classifying studies into groups (e.g. birds wversus
insects) and testing for significant among-group
variance in effect sizes for each categorical factor
using O, (0, is a measure of the variance in effect
size accounted for by differences among groups)
(Rosenberg, Adams & Gurevitch, 2000). For each of
the original meta-analyses we therefore split the data
using whichever categorical factor generated the
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greatest differences in effect sizes among groups (but
only if P<0.05 for Q,). Finally, using these criteria
we selected the group with the largest number of
empirical studies (mean +s.E.M. = 45.1+6.97, range
= 8-246). If there were two or more groups with an
equal number of studies we picked one at random.
We used the same effect size type as the original
authors. These were Pearson’s r (N = 21), Hedges’ d
(N =10), the natural log of the response ratio
(InRR) (N =7) or a customised effect size (N = 2).

(2) Calculating mean effect sizes

We calculated mean effect sizes weighted for sample
size using the software package Metawin 2.0
(Rosenberg et al., 2000). We ran both fixed-effect
(FE) and random-effect (RE) models for each of the
40 data sets. FE models assume a single true effect
common to all the studies. Variation in the observed
effects is solely attributed to sampling error. RE
models allow for a true random component as a
source of variation in effect size between studies, as
well as sampling error. In general, RE models are
preferred (N.R.C., 1992), especially in biology where
there is almost certainly real variation in actual
effect sizes among different taxa or ecosystems
(Gurevitch & Hedges, 1999). Some earlier meta-
analyses, however, only used FE models. Our
estimates of weighted mean effect sizes may differ
slightly from those reported in the original papers
because of rounding errors and/or minor differences
in the coding of original studies. We must stress that
our main intent is not to criticise individual studies,
but to highlight wider trends. We then used
bootstrapping with 999 replications to calculate
bias-corrected 959, confidence intervals. This does
not require that effect sizes are parametrically
distributed. The weighted mean effect is significantly
different from zero if the 959, confidence intervals
do not overlap zero. Analyses based solely on
parametric confidence intervals yielded the same
conclusions in 139 out of 146 cases.

(3) Testing for publication bias

A funnel plot of effect size against log-transformed
sample size should produce a funnel shape symmetric
around the ‘true’ effect size (Light & Pillemer,
1984). Purely due to sampling error (the larger the
sample the more accurate the estimate) the variance
in estimates of the ‘true’ effect size is higher for
studies with smaller samples. The observed effect
sizes should be normally distributed around the
mean effect with no trend in relation to sample size
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(Light & Pillemer, 1984 ; Begg, 1994). If studies with
statistically significant results are more likely to be
published, however, and the true mean is close to
zero, this will produce a ‘hollowed out’ funnel (see
Palmer, 2000). If the true effect is moderate and
non-significant results tend not to be published, this
will produce a skewed funnel in which the magnitude
of the effect size decreases as sample size increases
(Begg & Mazumdar, 1994; Palmer, 1999). This
second publication bias will lead to an inaccurate
estimate of the true effect size. Of course, a skewed
funnel plot can be caused by factors other than
publication bias since prior knowledge of effect sizes
from pilot studies, reduced sample sizes for certain
species, choice of effect measures, chance and many
other confounding variables may also create asym-
metric plots (Thornhill, Meller & Gangestad, 1999;
Gurevitch & Hedges, 1999). Even so, the robustness
of meta-analytic conclusions can be tested by making
the conservative assumption that skew is due to
publication bias.

In the biological sciences, aside from the fail-safe
number (see below), the only statistical approach
widely used to test for publication bias has been to
test for a significant relationship between sample size
and effect size using rank correlation tests (Begg &
Mazumdar, 1994; for related approaches see
Macaskill, Walter & Irwig, 2001; Moller &
Jennions, 2001). Palmer (1999) has called this
correlation 7,;,,. If studies with small samples are
only published when they have significant results,
and the ‘true’ effect is moderate, the funnel plot will
be skewed. There will be a decline in the magnitude
of the effect size with increasing sample size because
for studies with small sample sizes there is less
likelihood that an effect opposite in magnitude to the
‘true’ effect will reach statistical significance. This
decline has now been reported in a few specific fields
of study (e.g. Palmer, 1999, 2000; Gontard-Danek &
Moller, 1999; Jennions, Moller & Petrie, 2001).
Recently, using 232 data sets from 44 evolutionary
ecology meta-analyses that included most of the
current database, we found that the average re-
lationship is a highly significant, but small, decline in
effect size with sample size (Jennions & Moller,
2002). Here, we estimate these correlations using
Spearman’s r specifically to determine whether r,;,
and the estimated number of studies missing based
on funnel plot asymmetry (see below) are related.
Although several authors, including ourselves, have
previously presented the correlation between sample
size and effect size (e.g. Palmer, 2000; Jennions et al.,
2001), strictly speaking, effect size should first be
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standardised to conform to the assumptions of the
test (see Begg & Mazumdar, 1994). We therefore
standardised effect size here, although this makes
little difference in most cases (M. D. Jennions &
A. P. Moller, unpublished data).

More recently, the funnel plot has been used to
derive a non-parametric method of testing and
adjusting for possible publication bias in meta-
analysis. The “trim and fill” method of Duvall &
Tweedie (20004, b) estimates the number of ‘miss-
ing’ studies due to publication bias. The method is
reliant on the symmetric distribution of effect sizes
around the ‘true’ effect size if there is no publication
bias, and the simple assumption that the most
extreme results have not been published. These will
usually be studies with smaller sample sizes, because
variance in effect size (hence extreme values)
increases as sample size decreases. Once the number
of ‘missing’ studies is estimated, one recalculates the
weighted mean effect size and its variance when they
are incorporated.

The statistical procedure involves an iterative
process (Duvall & Tweedie, 20004, b). To start, one
calculates the weighted mean effect size for the full
data set and then ‘trims off” the outlying part of the
funnel plot that is asymmetrical with respect to the
mean. Simple formulae are used to estimate the
number of studies in the asymmetric part. These
studies are then temporarily removed (‘trimmed’)
and the remainder used to re-estimate the weighted
mean effect. Then, again using the full set of studies,
one ‘trims off” those studies asymmetrical with
respect to the new estimate of the mean. After just a
few iterations the estimate of the number of studies
that need to be trimmed reaches an asymptotic
value. One can now ‘fill in’ the ‘missing’ studies.
These are simply the mirror-image counterparts of
the trimmed studies around the final weighted mean
effect estimated using the symmetric portion of the
data set. The missing studies are given the same
variance as their corresponding ‘trimmed’ counter-
parts. Finally, the full data set that includes the
trimmed, missing and remaining studies is used to
calculate the new mean effect size and its confidence
intervals.

Duval & Tweedie (20004, b) present three dif-
ferent estimators (R,, L,, Q,) for the number £ of
missing studies. Of these, L, is the best general-
purpose estimator. Here, we follow Sutton et al.
(2000@) in using L, to calculate £ using formulae
entered onto an Excel spreadsheet (freely available
on request). We did this for both FE and RE models

in case the choice of model has an impact on the
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assessment of publication bias. However, because
RE models are more appropriate we place greater
emphasis on the results for these models (N.R.C.,
1992). Of course, chance asymmetry in a funnel plot
will lead to positive values of L, (Sterne, 2000). We
therefore also estimated how many meta-analyses
had a value of L, that was significant at the 0.05 level
(i.e. more studies missing than expected by chance).
Critical values of L, were estimated by extrapolating
from the simulations in Table 4 of Duvall & Tweedie
(2000b). These are therefore crude approximations.
Finally, we also calculated the fail-safe number of
studies needed to nullify an effect at the 59, level
following Rosenthal (1991, p. 104). This number
estimates how many studies with a mean eflect of
zero are needed to change a significant effect to a
non-significant one at the stated P level (here
significance must be calculated using parametric
959, confidence intervals). A value of X greater
than 5K'4+10 is usually considered to indicate a
robust conclusion, where £ 'is the reported number of
studies. Unless otherwise stated data are presented as
the mean +s.E.M. For non-significant tests, we pres-
ent the statistical power to detect a medium effect as
defined by Cohen (1988) with P (two-tailed) = 0.05.

III. RESULTS

Of the 40 meta-analyses, the initial estimate of
weighted mean effect size differed significantly from
zero (< 0.05) in 38 RE models and 35 FE models.
There were only three cases in which the conclusion
differed depending on the choice of model. The
weighted mean effects estimated using RE models
were, on average, 299, greater than those from FE
models (Wilcoxon’s test, < =3.92, N=40, P=
0.0001).

With RE models, 30 out of 40 meta-analyses were
estimated to have one or more missing studies
(Ly>0); with FE models this rose to 36 meta-
analyses. We then noted whether the probability of
each observed L, was less than 0.05. For RE models,
15 meta-analyses showed a significant publication
bias; for FE models, 20 were significant. Thus,
38-509%, of published meta-analyses show strong
evidence for publication bias. The estimated number
of studies missing was positively correlated for the 36
meta-analyses where both model types indicated
that the studies were missing from the same side of
the distribution (or where no study was missing for
one or both models) (r = 0.429, P = 0.009, N = 36).
There were, however, four cases where the side of the
distribution from which the studies were missing
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higher for RE models than for FE models (sign test,
P=0.031; 7.1+ 1.2 versus 5.8+ 1.1).

For FE models in 759, (27/36) of cases where we
estimated that studies were missing, their addition
moved the mean effect closer to zero. There was thus
a significant trend for missing studies to make
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conclusions about the weighted mean effect less
robust (binomial test, P<0.005). For RE models,
however, in only 57 9, (17/30) of cases where studies
were missing did their addition move the mean effect
closer to zero. Correction for missing studies was
therefore equally likely to reduce or increase the
robustness of conclusions about the weighted mean
effect (binomial test, P = 0.58; power: 36 9;,). Once
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we had added missing cases, we recalculated effect
sizes to see if this changed the conclusions of the
original meta-analyses based on 959, confidence
intervals. For FE models, in three cases an initially
significant result became non-significant. For RE
models, in eight cases a significant result became
non-significant. (These 11 cases were from 11
different meta-analyses.) No means that were orig-
inally judged non-significant became significant. In
sum, 8-219, of published meta-analyses may have
been interpreted incorrectly.

The potential for publication bias was also
reflected in the correlation between effect size
variance and the magnitude of the observed effect
size (standardised). The mean Begg—Mazumdar
correlation was 7, =—0.201 (/=15.34, d.f. = 39,
P<0.0001). Thus, the effect size was closer to zero as
sample size increased. There were 14 significantly
negative correlations (at P<0.10), but no signifi-
cantly positive correlations. [Begg & Mazumdar
(1994) recommended the use of P = 0.10 because of
the low power of the test.] We then tested if the
Begg—Mazumdar correlation predicts the number of
studies that are missing according to ‘trim and fill’
methods and whether these studies are greater or
smaller than the weighted mean effect. We coded L,
as positive if the addition of missing studies decreased
the mean effect. When the Begg—Mazumdar 7, is
negative, this implies that studies with effects smaller
than the weighted mean are missing so L, should be
positive. We therefore predict that L, and Begg—
Mazumdar r, are negatively correlated. Because the
absolute value of L, will increase with sample size by
chance, we first divided L, by the number of studies
in the meta-analysis. As predicted there was a
significant negative correlation for both FE models
(r=-—0.423, P=0.007, N =40) and RE models
(r=-—0.397, P =0.011, N = 40).
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Of course, a change from a significant to a non-
significant weighted mean effect is a crude measure
of the importance of missing studies if the real aim is
to see how robust the original estimate of effect size
is to publication bias. We examined this by looking
at the three main effect types separately. For
Pearson’s r, the mean percentage change (calculated
as the absolute difference in r before and after
recalculation divided by the original value of |+|) was
57.4+27.19, for FE models and 36.5+11.89%, for
RE models. This corresponded to mean absolute
changes in r of 0.037+0.008 and 0.039+0.008,
respectively (N =21). For Hedges’ d the mean
percentage change was 30.3+7.99, for FE models
and 17.0+5.4 9, for RE models. This corresponded
to absolute changes in 4 of 0.187+0.053 and
0.15340.061, respectively (N = 10). For the natural
log of the response ratio (InRR) the mean percentage
change was 20.9410.99% for FE models and
27.0+10.29, for RE models. This corresponded to
absolute changes in InRR of 0.121+0.086 and
0.13540.085, respectively (N = 7). The percentage
change is large even though the absolute difference
in effect size estimates is small because in evolution
and ecology mean effect sizes are weak (mean r =
0.21-0.27; A.P. Moller & M. D. Jennions, in
preparation). Original and recalculated effect sizes
were similar, but 15-289, of the variation in
recalculated mean effect size is unexplained by the
original estimate of effect size (Fig. 1).

When results are non-significant, researchers often
use an a prior: estimate of effect size to calculate
power. In the absence of pilot studies, they may rely
on a general estimate of effect sizes for relationships
in their field of study (e.g. A. P. Moller & M. D.
Jennions, in preparation). Most researchers, how-
ever, provide power for statistical tests assuming that
the true effect is small, medium or large as defined by
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Cohen (1988) (e.g. small: r = 0.1, d = 0.2; medium:
r=0.2,d=0.5;larger = 0.3, d = 0.8). We therefore
classified effect sizes before and after recalculation
using the criteria of Cohen (1988). We could only do
this for 31 meta-analyses (those using r or Hedges’ d).
For RE models, the weighted mean effect remain
unchanged and was classified as large for seven,
medium for 10 and small for 11 estimates. One large
estimate became medium, and one medium estimate
became small; while one small estimate became
medium. Thus, 109, (3/31) of effect sizes had to be
reclassified after correcting for publication bias.
Finally, we looked at the robustness of weighted
mean effects by examining fail-safe numbers. By the
convention that X>(53A+10) is robust, 859,
(34/40) of the original weighted mean effect esti-
mates were robust. With FE models, 20.6 9, (7/34)
of the estimates were no longer robust after being
recalculated. For RE models, 14.79, (5/34) of the
effect sizes were no longer robust after being
recalculated. For the 34 original results that were
robust, in 11 cases for FE models (329,) and in 21
cases for RE models (629,), the weighted mean

effect was the same or more robust after recalculation
(Fisher’s Exact test, P = 0.028) (Tig. 2A, B).

IV. DISCUSSION

To start, there was broad agreement between FE
and RE models as to whether or not weighted mean
effects were significant, although estimates from RE
models were approximately 29 9 larger. (The larger
mean estimates for RE models may ‘compensate’ for
the generally broader confidence intervals for RE
models which, all else being equal, should decrease
the likelihood of reporting a significant effect size
with RE models.) If anything, the initial use of FE
models by biologists may have led to weighted mean
effect sizes being slightly underestimated. The use of
the ‘trim and fill’ method, however, showed a
significant number of ‘missing’ studies for 389, of
RE model meta-analyses and 509, of FE model
meta-analyses. On average, the number of studies
missing was significantly greater for RE models.
Previously, the Begg—Mazumdar correlation has
been the main test used to detect possible publication
bias. As expected, we found significant agreement
between estimates of publication bias based on this
correlation and those based on the ‘trim and fll”
approach. (At present though there is insufficient
data to determine whether the Begg—Mazumdar
correlation can be used as a ‘short-cut’ to predict the
effect of adding ‘missing’ studies in terms of the
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robustness of recalculated effect sizes.) Furthermore,
individually significant Begg—-Mazumdar correla-
tions also suggest a publication bias in 35 9, of the 40
meta-analyses. The asymmetry in funnel graphs
previously described for specific topics in ecology
and evolution (e.g. Palmer, 2000; Jennions e/ al.,
2001) therefore appears to reflect a more general
phenomenon (Jennions & Moeller, 2002). Although
alternative explanations for a skewed funnel graph
should not be neglected (Thornhill et al., 1999),
publication bias could be a potential problem for at
least one in three meta-analyses.

Correcting for publication bias using the ‘trim
and fill’ method of Duvall & Tweedie (20004, b) led
to three out of 35 and eight out of 38 initially
significant weighted mean effects becoming non-
significant for FE and RE models, respectively. The
weighted mean effect size was no longer robust after
being recalculated for 21 9%, of FE models and 159,
of RE models. If these findings can be generalized to
future studies then 15-219, of meta-analyses in
ecology and evolution could reach erroneous conclu-
sions if no correction is made for publication bias. By
contrast, Sutton et al. (2000a) suggested that only
5-109, of medical meta-analyses might have
reached an incorrect interpretation because of
publication bias.

There was one significant and unexpected differ-
ence between FE and RE models. For FE models,
719, of recalculated weighted means were less robust
because missing studies reduced the mean effect size.
By contrast, for RE models, 59 9, were the same or
more robust. For RE models, the ‘missing studies’
were often larger than the initial weighted mean.
This is not as predicted by publication bias and
suggests that asymmetry in funnel plots may have
other, as yet unknown, causes. Sutton ¢t al. (2000aq)
only reported decreases in weighted mean effect size
in an analysis of 48 medical meta-analyses, although
this was not the case when one analyses other
datasets (R. Tweedie, personal communication).
Chance asymmetry provides an insufficient expla-
nation for our findings because in eight of the 13
cases where missing studies had effect sizes smaller
than the weighted mean effect size the number of
studies missing was significantly more than expected
by chance. The difference between the medical
studies of Sutton et al. (2000a) and the ecological/
evolutionary studies analysed here may relate to
differences in the range of sample sizes. One or two
studies with unusually strong effects and larger
sample sizes can generate a weighted mean effect
that is larger than most of the reported effect sizes.
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For example, the removal of three out of 84 cases
with large effects and small variances from Gontard-
Danek & Moller (1999) changes the situation from
an estimate of 14 missing studies larger than the
mean and a recalculated weighted mean of r = 0.43,
to no missing studies and the original weighted mean
of r = 0.35. The effect of publication bias in ecology
and evolution when using RE models for meta-
analysis, at least for the currently available data, is
therefore idiosyncratic. In eight cases, the weighted
mean became statistically non-significant, but in 13
cases the mean stayed significant and was actually
more robust after correcting for publication bias.
In general though, we suggest that any increase in
robustness be disregarded. The observed asymmetry
in the funnel plots could even be due to selective
reporting of studies with effects smaller than the
average effect, perhaps because of a prejudice or
‘backlash’ against a well-established idea or so-
called ‘bandwagons’ (Palmer, 2000; Poulin, 2000).
For now, however, we think it is best to be
conservative and simply ask whether results remain
robust after correcting for funnel-plot asymmetry.
Sterne (2000) criticized Sutton ¢t al. (20004), saying
that the ‘trim and fill” method leads to false positive
claims of missing studies. This is true, although the
criticism can partly be responded to by highlighting
how often the number of missing studies is too large
to be attributed to chance alone (i.e. P<0.05). Here,
this occurred for 38 9, of the random-effects models.
More generally, Sutton et al. (20005) emphasise that
the critical aim of ‘trim and fill’ is not to quantify
exactly how many studies are really missing. Rather,
it is to test whether results are robust and conclusions
unchanged when we correct for possible bias. Here,
we show that for the preferred RE model approach,
219, (eight of 38 meta-analyses) were not robust to
potential publication bias. We therefore strongly
recommend that authors of meta-analyses routinely
include estimates of recalculated effect sizes using
‘trim and fill” methods. These methods are easy to
apply and, along with fail-safe numbers (Rosenthal,
1991) and Begg—Mazumdar correlations (Begg &
Mazumdar, 1994), allow readers to decide for
themselves how sensitive a reported significant
relationship is to potential bias. Finally, reviewers
should also be careful about drawing conclusions
about factors that lead to heterogeneity in effect
sizes. At present, there is no way of knowing what the
effect of “missing’ studies will be on tests of significant
variation in effect size among different groups.
Significant between-group heterogeneity should
therefore be assessed in the light of the number of
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missing studies. Perhaps ‘missing” studies could be
conservatively assigned so as to reduce between-
group heterogeneity to test whether group differ-
ences are still statistically significant.

V. CONCLUSIONS

(1) If asymmetry in a ‘funnel plot’ of effect size
against sample size is due to publication bias, the
‘trim and fill’ method indicates that 38-50 9, of data
sets have a significant publication bias as indicated
by an excess of ‘missing’ studies.

(2) The more familiar Begg—Mazumdar corre-
lation also showed that, on average, effect sizes are
closer to zero as sample size increases. In general, the
findings of the “trim and fill’ method and Begg-—
Mazumdar correlation were in agreement. ‘ITrim
and fill’, however, has the advantage that a
‘correction’ for possible publication bias can be
made by adding ‘missing’ studies.

(8) In 759, of the cases analysed using fixed-
effects models, the addition of missing studies moved
the mean effect closer to zero. For random-effects
models, the equivalent figure was 579%,. More
importantly, 8-21 9, of data sets where the original
estimate of the average relationship differed signifi-
cantly from zero became non-significant.

(4) Stated slightly differently, using the con-
ventional definition of a ‘robust’ result based on
Rosenthal’s fail-safe numbers, 15-21 9, of effect size
estimates were no longer robust after being recalcu-
lated to include ‘missing’ studies.

(5) We conclude that publication bias is a
potential problem for reviewers. This is most clearly
seen when a quantitative reviewing method like
meta-analysis is used, but is equally true for narrative
reviews.

(6) Reviewers should always test for publication
bias. Aside from established techniques, we specifi-
cally recommend the use of ‘trim and fill’. It is the
only method that allows one to estimate conserva-
tively whether publication bias has influenced the
conclusions reached by a reviewer. It is easy to use
and does not require expensive software or advanced
statistical skills.
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