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Both signi® cant positive and negative relationships between the magnitude of research ® ndings (their
`effect size’ ) and their year of publication have been reported in a few areas of biology. These trends have
been attributed to Kuhnian paradigm shifts, scienti® c fads and bias in the choice of study systems. Here
we test whether or not these isolated cases re¯ ect a more general trend. We examined the relationship using
effect sizes extracted from 44 peer-reviewed meta-analyses covering a wide range of topics in ecological and
evolutionary biology. On average, there was a small but signi® cant decline in effect size with year of
publication. For the original empirical studies there was also a signi® cant decrease in effect size as sample
size increased. However, the effect of year of publication remained even after we controlled for sampling
effort. Although these results have several possible explanations, it is suggested that a publication bias
against non-signi® cant or weaker ® ndings offers the most parsimonious explanation. As in the medical
sciences, non-signi® cant results may take longer to publish and studies with both small sample sizes and
non-signi® cant results may be less likely to be published.
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1. INTRODUCTION

The basis for scienti® c investigations is to make general-
izations about relationships, and to identify their limits
(Hempel & Hempel 1966; Chalmers 1999). Review
papers, meta-analyses and handbooks that summarize the
available literature are thus invaluable because they serve
as sources of generalized knowledge. However, these
almost self-evident statements only apply if the literature
being reviewed is unbiased. Numerous studies of scienti® c
bias suggest that anything from language to professional
seniority may bias what is assessed as the general state of
knowledge. More seriously, similar biases may determine
what information enters the scienti® c literature following
peer review. Studies, mainly in the social and medical
sciences, have shown that publication bias with respect to
language, institution, strength of ® ndings, and congruence
of research ® ndings with ruling paradigms may bias what
is being published (Song et al. 2000). A ® rst step towards
rectifying such bias is to determine how severe it really is
and what form it takes. Subsequently, it might then be
possible to adjust generalizations about scienti® c relation-
ships to correct for any bias.

Recent work shows that the strength of scienti® c ® nd-
ings has signi® cantly changed with year of publication in
at least four speci® c research areas in evolutionary ecology
(Alatalo et al. 1997; Gontard-Danek & Mù ller 1999;
Simmons et al. 1999; Poulin 2000). No one knows
whether these are isolated occurrences or re¯ ect a more
widespread trend. The relationship between the strength
of research ® ndings and the year of publication requires
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interpretation. These speci® c cases have been attributed
to changing belief systems (Alatalo et al. 1997; Poulin
2000), so-called `bandwagon’ fads (Palmer 2000) or
biased study design (Tregenza & Wedell 1997). Alatalo et
al. (1997) suggested that publication of a theoretical ® nd-
ing that substantiates previous empirical ® ndings might
make it easier to publish a certain kind of result. Simmons
et al. (1999) suggested that, during the initial stages of
research in a speci® c area, it might be easier to publish
con® rmatory results than later on when a more critical
view of the ® eld develops. We should not forget, however,
that a relationship between effect size and year is a simple
correlation. Determination of causation is dif® cult, so
confounding variables must be considered (Tregenza &
Wedell 1997). For example, studies may use smaller sam-
ple sizes once a given effect has been determined in an
earlier study (Thornhill et al. 1999). Many countries
require that sample sizes in experiments, but not in obser-
vational studies, are kept to a minimum for ethical
reasons, but only in certain taxa. Such factors must be
taken into account before inferring potential bias, as indi-
cated by a relationship between strength of research ® nd-
ings and year of publication. Might reporting of signi® cant
`year effects’ itself be subject to a publication bias exagger-
ating its prevalence or magnitude?

Here, in what is, to our knowledge, the ® rst systematic
inquiry, we examine 44 previously published ecological or
evolutionary meta-analyses to test the generality of earlier
® ndings. We ® nd a small, but highly signi® cant, decline
in the strength of reported relationships with publication
date, while empirical studies with larger sample sizes
report more modest ® ndings. The latter ® nding suggests
a publication bias against studies with small sample sizes
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and non-signi® cant ® ndings. Our results mirror those in
medicine and the social sciences (Song et al. 2000) where
it takes longer to publish non-signi® cant results (Stern &
Simes 1997; Ioannidis 1998). It is suggested that publi-
cation bias based on p-values (Palmer 2000), rather than
external factors, may offer a more parsimonious and gen-
eral explanation for the observed results.

2. METHODS

Ecological and evolutionary literature for meta-analyses up to

the end of 2000 were surveyed. The journals American Natural-

ist, Animal Behaviour, Behavioral Ecology, Behavioral Ecology

and Sociobiology, Ecological Monographs, Ecology, Evolution, Evol-

utionary Biology, Journal of Evolutionary Biology and Quarterly

Review of Biology were examined. The phrase `meta-analy ’ was

entered into the electronic database webSPIRS to locate papers

where it occurs in the title or abstract. We then examined the

title and place of publication, and directly inspected any papers

that seemed to be related to non-human evolutionary or ecologi-

cal biology (most `hits’ were in the medical or social sciences).

Furthermore, a number of colleagues who have used meta-

analyses in their research were contacted in order to locate as

yet unpublished studies. A total of 44 peer-reviewed meta-analy-

ses were identi® ed for the present study. Thirty-seven meta-

analyses that initially appeared suitable were excluded because

they: (i) did not present effect sizes for original empirical studies,

only mean effect sizes, and the authors were unable to provide

the original effect sizes; or (ii) had been updated and overlapped

with a more recent meta-analysis that was already included (e.g.

Hamilton & Poulin 1997); or (iii) had almost no variation in

year of publication (e.g. Arnqvist et al. 1996); or (iv) presented

too few effect sizes (n , 5) (Westlake & Rowe 1999); or (v) were

generally unsuitable because they presented complex statistics

where effect size depended on a continuous variable (Goldberg

et al. 1999). Finally, meta-analyses where heritability was treated

as an effect size were excluded (e.g. Mù ller & Thornhill 1997)

because it is unclear whether heritability (h2) or an effect size

calculated from the p-value of the associated regression should

be used. The meta-analyses used are listed in electronic Appen-

dix A (available on The Royal Society’ s Publications Web site).

Four relationships were examined: (i) the relationship

between effect size and year of publicationÐ the year of publi-

cation for unpublished studies was coded as the year after the

original meta-analysis was published; (ii) the relationship

between effect size and sample size (rb ias of Palmer 1999); and

(iii) the relationship between standardized effect size and sample

size (standardization is necessary, even when using a rank-corre-

lation test, to stabilize the variance in effect size, that increases

as sample size decreases (see Begg & Mazumdar 1994, p.

1089)). All three relationships were calculated as Spearman’s

correlations. Finally, the relationship between effect size and

year of publication, weighted for variation in sampling effort,

was examined. To estimate this, a random-effects continuous

model meta-analysis with year of publication as the independent

variable and the inverse of sampling variance as the weighting

factor was used. The effect size for the in¯ uence of year of publi-

cation was calculated by converting the p-value to a standard

normal deviate (Z-score) and then using the formula r = Î Z 2/n

(Rosenthal 1994). The one-tailed p-value for year of publication

generated by a randomization method with 999 replicates run

in MetaWin 2.0 was used (Rosenberg et al. 2000). Finally, for

the purpose of performing meta-analyses to determine weighted
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mean effect size, all correlation coef® cients were converted to

Fisher’ s Z. This may legitimately be computed for Spearman’s

correlations when n $ 10 and r # 0.9 (Zar 1984).

Most of the 44 original meta-analyses asked several related

questions and therefore comprised several datasets that exam-

ined different relationships (e.g. parasite load versus spleen size;

parasite load versus condition). In addition, the original authors

often found signi® cantly more heterogeneity in effect size than

could be explained by sampling error. They therefore looked for

an underlying structure in the data by classifying studies into

groups (e.g. temperate versus tropical) and testing for signi® cant

among-group variance in effect sizes for each categorical factor

using QB (variation in effect size explained by differences among

rather than within groups) (Rosenberg et al. 2000). For each of

the 44 meta-analyses we therefore split the data for each

response variable using the single categorical factor that gener-

ated the greatest differences in effect sizes among groups (but

only if p , 0.05 for QB ). This reduces the likelihood that effect

size is correlated with sample size and/or year of publication

because of confounding variation with study system type. This

yielded 232 datasets with 22.8 ± 1.7 (mean ± s.e.) effect sizes per

dataset (range = 5± 246).

Initially, the four correlations of interest were calculated sep-

arately for each of the 232 datasets. These analyses are referred

to as being at the `sample level’ . Treating these datasets as dis-

tinct is a standard practice in meta-analyses because the ques-

tions being asked are conceptually different (Rosenthal 1994, p.

241). However, because the different response variables exam-

ined were often measured in identical or overlapping sets of ori-

ginal empirical studies, they are not, strictly, statistically

independent. So, to be conservative, the weighted mean corre-

lation (Z-transformed) per original meta-analysis for each

relationship of interest was also calculated. Subsequent analyses

using these means are referred to as being at the `original meta-

analysis level’ .

The weighted mean effect sizes for each of the four relation-

ships at both the sample level and the original meta-analysis level

were calculated. For the latter, effect size was weighted by the

average number of empirical studies per dataset in the original

meta-analysis. Mixed-effects models were used. To test for the

signi® cance of the mean effect, bias-corrected con® dence inter-

vals were calculated using bootstrapping with 999 replications

run in MetaWin 2.0 (Rosenberg et al. 2000). This approach

does not require that effect sizes be parametrically distributed.

Finally, unweighted mean effect sizes and con® dence intervals

were calculated using standard summary statistics and one-

sample t-tests. This tests the robustness of the results by dealing

with the criticism that research areas where more studies have

been conducted have undue in¯ uence on estimates of mean

relationships. Conversely, of course, calculating unweighted

means gives equal importance to relationships based on very

small sample sizes. Data are presented as mean ± s.e. or with

95% con® dence intervals. Sample sizes vary slightly because, for

some studies, variance and sample size were not both available.

3. RESULTS

Results are summarized in table 1. Starting at the sam-
ple level of analysis, there was a signi® cant negative
relationship between year of publication and effect size
(r = 2 0.074, p , 0.004; 95% con® dence interval (CI):
2 0.115 to 2 0.033, n = 232). There was, however, also a
signi® cant negative relationship between effect size and
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Table 1. Relationships (r) between effect size, standardized effect size, year of publication and sample size. ( p , 0.0001;
p , 0.002; p , 0.01; p , 0.02.)

method of calculation year versus effect n versus effect n versus standard effect year versus effecta

weighted meta-analysis of datasetsb 2 0.074 2 0.124 2 0.101 2 0.043
(n = 232) (n = 210) (n = 201) (n = 213)

weighted meta-analysis of original
meta-analyses c 2 0.133 2 0.188 2 0.121 2 0.105

(n = 44) (n = 38) (n = 36) (n = 39)
unweighted mean of original meta-

analyses 2 0.084 2 0.129 2 0.113 2 0.058
(n = 44) (n = 38) (n = 38) (n = 39)

a Controlled for variation in sampling effort (see § 2).
b Weighted by sample size.
c Weighted by the average sample size per dataset.

Figure 1. Histogram of the correlation (Z-transformed)
between the year of publication and the effect size at the
level of original meta-analyses (n = 44). Bins are 0.2 units
wide.

the sample size used to estimate the effect (r = 2 0.124,
p , 0.0001; 95% CI: 2 0.172 to 2 0.080, n = 210; using
standardized effect size: r = 2 0.101, p , 0.0001; 95% CI:
2 0.147 to 2 0.049, n = 201). Given this, the in¯ uence of
year of publication was reassessed, but controlled for vari-
ation in sampling effort. The relationship was still signi® -
cant (r = 2 0.043, p , 0.01; 95% CI: 2 0.088 to 2 0.006,
n = 213).

Next, these analyses were repeated at the original meta-
analyses level. The average number of datasets per original
meta-analysis was 5.3 ± 1.0, and the average number of
samples per dataset was 31.2 ± 4.9 (range = 5± 199).
Again, there was a signi® cant negative relationship
between year of publication and effect size (r = 2 0.133,
p , 0.01; 95% CI: 2 0.189 to 2 0.062, n = 44). There was
also a signi® cant negative relationship between effect size
and sample size (r = 2 0.188, p , 0.01; 95% CI: 2 0.246
to 2 0.125, n = 38), but not for standardized effect size
(r = 2 0.121, p . 0.10; 95% CI: 2 0.218 to 0.044, n = 36).
The signi® cant negative relationship between year of pub-
lication and effect size remained even after controlling for
sampling effort (r = 2 0.105, p , 0.01; 95% CI: 2 0.151 to
2 0.055, n = 39).

Finally, we just calculated unweighted means at the
original meta-analysis level (see § 2). There was a negative
relationship between year of publication and effect size
(r = 2 0.084, t43 = 2.43, p = 0.019; 95% CI: 2 0.153 to
2 0.014) (® gure 1), and between effect size and sample
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Figure 2. Histogram of the correlation (Z-transformed)
between the sample size and (a) standardized effect size
(n = 38) and (b) effect size (n = 36) at the level of original
meta-analyses. Bins are 0.2 units wide.

size (r = 2 0.129, t37 = 2.48, p = 0.018; 95% CI: 2 0.234
to 2 0.024; standardized effect size: r = 2 0.113, t35 = 1.90,
p = 0.066; 95% CI: 2 0.234 to 0.008). If one or two
extreme outliers, respectively, are removed (® gure 2), both
relationships are highly signi® cant (r = 2 0.172, t36 = 5.85,
p , 0.0001; 95% CI: 2 0.232 to 2 0.112; standardized
effect size: r = 2 0.188, t33 = 7.03, p , 0.001; 95% CI:
2 0.243 to 2 0.134). There was no signi® cant relationship
between year of publication and effect size after con-
trolling for sampling effort (r = 2 0.058, t38 = 1.59,
p = 0.119; 95% CI: 2 0.132 to 0.016) (® gure 3). However,
if less reliable estimates from meta-analyses where the
average number of effect sizes per dataset was # 10 are
excluded (n = 6), the effect of publication date remains
signi® cant (r = 2 0.095, t32 = 2.65, p = 0.012; 95% CI:
2 0.168 to 2 0.022).
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Figure 3. Histogram of the correlation (Z-transformed)
between the year of publication and the effect size at the
level of original meta-analyses after controlling for sampling
effort (n = 39). Meta-analyses with fewer than 10 studies per
dataset are indicated by the white bar area. Bins are
0.2 units wide.

It has been suggested that some authors may currently
contribute disproportionately to meta-analyses and this
might distort results (Palmer 1999). The strength of the
relationships of interest between meta-analyses were com-
pared where we were the authors (n = 11) and in the
remaining meta-analyses (n = 33). We investigated this at
the original meta-analysis level. There was no signi® cant
difference in the weighted mean relationship between
effect size and year of publication (QB = 2.54, p = 0.147).
When corrected for sampling effort, the meta-analyses
where we were authors had a marginally weaker mean
relationship (QB = 2.54, p = 0.058; r = 2 0.142 versus
2 0.040). There was also no difference for the relationship
between sample size and effect size (QB = 0.46, p = 0.506;
r = 2 0.175 versus 2 0.218). For sample size versus stan-
dardized effect size the difference was non-
signi® cant, but stronger for the meta-analyses that we
authored (QB = 2.29, p = 0.122; r = 2 0.064 versus
2 0.255). Examining only those meta-analyses of other
authors, the relationship between year of publication and
effect size remains signi® cant both before (r = 2 0.166
p , 0.01, n = 33) and after correcting for sampling effort
(r = 2 0.142, p , 0.01, n = 28). The relationship between
sample size and effect size was signi® cant (r = 2 0.175,
p , 0.01, n = 27), but not that between sample size and
standardized effect size (r = 2 0.053, p . 0.25, n = 25).

4. DISCUSSION

Previous studies have reported either a signi® cant
increase (e.g. Alatalo et al. 1997) or decrease (e.g.
Mù ller & Alatalo 1999) in the strength of research ® ndings
over time. Here it was found that, for all three analytical
approaches, on average, there is a signi® cant negative
relationship between effect size and year of publication.
Even after controlling for variation in sampling effort, the
relationship between year of publication and effect size
remained signi® cant in weighted meta-analyses. In
unweighted analysis the trend was towards a signi® cant
negative relationship, but this only became signi® cant if
a few less-reliable studies, based on small samples, were
excluded. In general, it is concluded that more recently
published studies in ecology and evolution report weaker
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® ndings (have smaller `effect sizes’). The effect of year of
publication is, however, fairly weak. It explains, at most,
1.8% of the variance in effect sizes (r 2 = 2 0.1332 = 0.18).
An effect where r 2 = 1% and 9% are de® ned as small and
medium, respectively, by Cohen (1988). To place this in
perspective, however, in a recent review it was found that
the mean effect size for biological relationships in pub-
lished ecology and evolution meta-analyses is such that
r 2 is only 4.4± 7.3% (A. P. Mù ller and M. D. Jennions,
unpublished data).

One reason why more recently published ecological and
evolutionary studies document weaker scienti® c ® ndings
is that clear-cut results reduce the time-lag from study
completion to publication due to bias in submission,
reviewing and editorial decisions. A larger effect size leads
to earlier publication (e.g. Ioannides 1998). The role of
statistical signi® cance in publication decisions is well
known in the medical sciences (Song et al. 2000). The
same biases also seem likely to arise in biology (Palmer
2000), although convincing data based on direct compari-
son of published and unpublished studies, or tracking the
fate of a known set of studies, is not yet, to our knowledge,
available (Mù ller & Jennions 2001). Although ecological
and evolutionary research may be in¯ uenced by broader
social trends (Gowaty 1996), sudden paradigm shifts
(Kuhn 1996), or even idiosyncratic changes in what top-
ics, ® ndings or explanations are of interest (Feyerabend
1993), an average temporal decline in the strength of pub-
lished ® ndings is not predicted by these phenomena. Fads,
social trends and paradigm shifts would seem as likely to
lead to an increase as a decrease in effect sizes. For
example, Kuhnian paradigm shifts are usually about how
an established phenomenon is explained and what
research questions are seen to be interesting: when
Einstein replaced Newton apples still fell from the tree.

A slightly different perspective on these matters has
been taken by Simmons et al. (1999), Poulin (2000) and
Palmer (2000), who argue that a new ® eld of research (or
paradigm) may generate a so-called `bandwagon’ effect
where corroborative studies are readily published. Later,
as skepticism grows and methodology improves, results
that refute or question earlier ® ndings may ® nd a more
receptive audience (Simmons et al. 1999). This would also
explain a decline in effect size with time. Similarly, one
could argue that in biology, replication of an in¯ uential
study identifying a novel relationship is likely to be con-
ducted sooner by those working on related species.
Researchers are usually more alert to trends in their own
narrow ® eld of research because of who they interact with
and which journals they read. Later, as ® ndings are more
widely disseminated, those working on more distant taxa
may also `replicate’ the original study when looking for
a similar relationship. However, for biological reasons, a
mating pattern detected in long-tailed widow birds may
be less likely to be seen in house ® nches and unlikely to
be seen in crickets or frogs. This, too, could result in a
decline in effect size with year of publication (e.g. Poulin
2000, p. 791). Alternatively, one could argue that an
in¯ uential new theoretical paper suddenly makes it poss-
ible to publish a result that was previously considered
implausible because it is now `explicable’ (Alatalo et al.
1997).

The problem with all these speculative scenarios, how-
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ever plausible, is that they have little independent support.
They all stem from the same two patterns: the relation-
ships between effect size and year of publication or sample
size. In our view it is premature to attribute temporal
trends to the publication of speci® c papers, as did Alatalo
et al. (1997) and Poulin (2000). For example, while Alat-
alo et al. (1997) showed that heritability estimates
increased with year of publication and attributed this to
Pomiankowski’ s 1988 model showing that `good gene’
models were theoretically workable, Mù ller & Alatalo
(1999) found a signi® cant temporal decline in paternal
effects on offspring viability. In general, explanations for
temporal trends based on Kuhnian paradigm shifts or
socially driven fads may have been readily accepted simply
because ¯ uctuating asymmetry and good genes are, for
whatever reason, controversial topics. The potential for
human prejudice to in¯ uence the literature therefore
seems greater. In contrast, it has been shown here that,
on average, `year effects’ are a widespread phenomenon in
ecology and evolution (at least for the currently available
datasets). A more general explanation must therefore be
sought.

It is suggested that the most parsimonious explanation
for our ® nding of a year effect is the preoccupation of
scientists with statistical signi® cance as criteria for publi-
cation (see also Palmer 2000). This leads to studies with
stronger effects being published sooner. This explanation
has the additional advantage that it is consistent with
trends in the social and medical sciences, where the role
of statistical signi® cance in publication has been directly
demonstrated (Song et al. 2000). Of course, other factors
may be at play in speci® c cases. The temporal increase in
the reported heritability of sexual characters is opposite to
that predicted by a bias towards more strongly signi® cant
results (Alatalo et al. 1997). Likewise, Poulin noted that
he observed a temporal decline even though all the indi-
vidual studies were statistically signi® cant (see ® g. 4 of
Poulin (2000)).

Our claim that publication bias based on statistical sig-
ni® cance explains the `year effect’ is further supported by
the signi® cant negative correlation between effect size and
sample size in all three analyses. This explained, at most,
3.5% of the variation in effect sizes (r = 2 0.188). If there
is no bias, a scatter plot of effect size against sample size
should generate a funnel shape around the `true’ effect
size, with effect sizes based on larger samples being closer
to the `true’ effect size (Light & Pillemer 1984). This
occurs because estimates of effect size based on small sam-
ple sizes are subject to greater sampling error, yielding a
wider range of estimated effects. However, at any given
sample size the reported effect sizes should be normally
distributed around the mean effect and there should be
no relationship between sample size and effect size
(Palmer 1999). Any deviations from this symmetrical
funnel-shaped plot can be used to infer publication bias.
Speci® cally, if there is a moderate `true’ effect size and
researchers, reviewers and editors respond more favour-
ably towards statistically signi® cant results (Song et al.
2000; Mù ller & Jennions 2001), this should generate a
skewed funnel plot in which effect size decreases as sample
size increases (Begg 1994; Begg & Mazumdar 1994).
Studies with small sample sizes will only be published if
the results are signi® cant. Conversely, because of low stat-
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istical power, non-signi® cant results will probably only be
published if they are based on large samples (Cohen
1988). Given a moderate `true’ effect, therefore, when
sample size is small only those ® ndings in the direction of
the true effect are likely to reach statistical signi® cance.
Thus, studies with small samples and small effect sizes are
systematically under-reported (Begg 1994).

Earlier studies reported a negative relationship between
effect size and sample size for several isolated topics in
ecology or evolution (e.g. Palmer (1999) and Jennions et
al. (2001) and references therein). These reports, how-
ever, appear to have used the simple correlation between
effect size and sample size, while Begg & Mazumdar
(1994) and Begg (1994) recommend that effect size be
standardized. On average, correlations using standardized
and non-standardized effect size are similar (r = 0.89,
p , 0.0001, n = 201), but they can differ considerably. For
example, Palmer (2000) reported rs = 2 0.39 for asym-
metry-® tness effect sizes, but using standardized effect size
the value is rs = 2 0.16. The certainty with which it can be
concluded that there is funnel plot asymmetry depends on
which correlation is used. There is a signi® cant negative
correlation for all three analyses based on simple effect
size; but for standardized effect size, the correlation is sig-
ni® cant at the sample level, non-signi® cant at the original
meta-analysis level, and marginally signi® cant using an
unweighted approach (although highly signi® cant if two
clear outliers are removed). The trend, however, is always
a decrease in effect size as sample size increases, as pre-
dicted by a publication bias against non-signi® cant results.

It has previously been argued that this relationship
could arise due to heterogeneity in the data. For example,
if an effect has been shown to be small, those working on
the same topic may adjust sample sizes upward (Thornhill
et al. 1999); experimental studies may generate larger
effect sizes with smaller sample sizes because confounding
variables are controlled; and taxa where sample sizes tend
to be smaller may fortuitously be those where the actual
effect is stronger. Although these alternative explanations
cannot be completely excluded, the fact that the data were
initially partitioned to reduce within-group heterogeneity
makes them less plausible.

In conclusion, publication bias, whatever the underlying
cause, appears to be a problem in biology because both
year of publication and sample size are correlated with
effect size. This raises questions about the validity of
drawing general conclusions from the biological literature,
using formal meta-analysis or traditional narrative reviews.
Because the year of publication and the sample size each
explained less than 4% of the variation in effect size the
problem may, at ® rst glance, appear negligible. Elsewhere,
we have estimated the number of studies `missing’ due to
publication bias (Jennions & Mù ller 2002). In about 15%
of cases robust, positive estimates of mean effect size
no longer differ signi® cantly from zero if `missing’
unpublished studies are taken into consideration. Publi-
cation bias is therefore a general problem, which is appar-
ently not unique to strongly hypothesis-driven science (cf.
Poulin 2000).
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