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Mating preferences for specific traits

increase the fertility, fecundity or offspring

fitness of choosy individuals. However,

current fitness benefits offer an incomplete

account of the relative influence of different

signals on mate choice. The history of

selection on sensory systems in a broader

ecological context can provide many missing

details. Recent innovative use of neural

networks by Phelps and Ryan shows that

modelling the chronological order in which

past selective forces have acted predicts the

actual mating preferences of túngara frogs.

Sensory exploitation is the wallflower in
the endless dance of wits between
competing adaptive explanations of
mating preference evolution. Such
adaptive explanations predict coevolution
of female preferences and male traits and
the build-up of genetic correlations
between the two. Female choosiness is
adaptive because females benefit directly,
or because one or more components of
offspring fitness (e.g. survival, mating
success and disease resistance) are
elevated1,2. The role of evolutionary
history in shaping current female mating
preferences is often acknowledged,
occasionally ignored, but seldom
investigated directly. It is very rarely
considered a direct alternative to adaptive
models (Box 1). Two genuinely innovative
studies by Phelps and Ryan3,4, one just
published, do much to rectify this
situation. They remind us that
incorporating historic explanations in
models provides a deeper insight than
does restricting our inquiries to the
current adaptive value of traits5.

Phelps and Ryan4 first trained a simple
neural network (Box 2) to distinguish
between the whine call of a male túngara
frog (Physalaemus pustulosus) and a noise
stimulus of the same duration and
temporal changes in loudness (i.e. an
identical sound amplitude envelope). The
noise had the same frequency (pitch)
components as the call of a male frog but
these components were randomized
within the sound envelope. The neural
networks that are most familiar to
behavioural ecologists consist of an input

layer, a single ‘hidden’ layer and an output
layer (e.g. Refs 6,7). Phelps and Ryan’s
neural network had an input layer with 15
neurons, each selectively sensitive to an
87 Hz range of sound frequencies. The
total frequency range covered was,
therefore, 1305 Hz (261–1565 Hz), which
spans the range of natural calls. Each
input neuron was connected to all 12
neurons in a feature detector layer. Each
of these was, in turn, connected to all 12
neurons in a context layer. The context
layer neurons were then connected back to
each feature detection layer neuron,
forming a feedback loop between the two
layers. Finally, the feature detection
neurons were connected to a single output
neuron.

There are two ‘hidden’ layers in Phelps
and Ryan’s networks because sound has a

temporal component. Rather than a
network being played the sound directly,
it was asked to discriminate between
stimuli presented as spectrograms –
visual representations of sound where
frequency is plotted against time. The
intensity of the sound at each time and/or
frequency point was indicated by the
shade of the image. The darker the image,
the louder the signal. The test stimulus
was placed at random within a time
window divided into 70 slices. The
network was then fed consecutive slices of
the spectrogram one by one, starting with
the first, until all 70 had been played.
Feedback from the context layer to the
feature detection layer changed the
activity of the feature detection neurons,
providing a form of memory because the
response to later parts of a stimulus

Box 1. Will history teach us nothing?

A sense of history

Michael D. Jennions and Robert Brooks

Students of animal behaviour treat history and current adaptive value as separate
levels of explanationa. Why then do most researchers working on sexual selection only
study the current fitness benefits of female mate choice? An implicit assumption is that
identifying these benefits reveals the dominant forces that shaped the mating
preference. What does history add? Whereas weak versions of sensory exploitation
(closer to sensory drive or receiver bias modelsb) note that signals and preferences are
predisposed to evolve in directions determined by the sensory capabilities of receivers
in specific environments, they do not contradict the claim that preferences and traits
coevolve because of fitness benefits of female choice. Weak versions of sensory
exploitation only highlight the likely direction in which characters have evolved.

By contrast, stronger versions of sensory exploitation (closer to pre-existing biasc or
sensory trap modelsb) present alternative evolutionary histories to those invoking
current adaptiveness of mate choice. They are supported by phylogenetic evidence
that the male trait was sexually selected by a female preference that had already
evolvedb–d. (Unfortunately, mapping characters onto phylogenies has its weaknesses.
Specifically, when a preferred trait is gained in all descendants, the pre-existence of the
preference is undetectable. Thus, male sensory exploitation of very strong preferences
might not be detected.) The strength of Phelps and Ryan’s modellinge is to show that
historic accounts can do more than just identify the origin of female mating
preferences, they also have the potential to explain many of the details.
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depends on those stimuli that have
preceded it.

In 20 selection simulations, each
lasting on average 1000 generations,
networks were trained to recognize the
male túngara frog call (Box 2). Phelps
and Ryan then tested the best network
per simulation with a series of 34 stimuli
that the network had not encountered
before. These stimuli comprised the calls
of other species in the P. pustulosus
clade, as well as various hypothetical
reconstructions of ancestral calls.
Amazingly, the responses of the 20
artificial networks (the proportion of 
calls ‘recognized’) was strongly correlated
with the proportion of live female 
P. pustulosus that approached the same
stimuli in phonotaxis tests (in which the
alternative was a white noise stimulus).
The network response explained 65% of
the variation in stimulus recognition by
real female frogs.

This study is important for two
reasons. First, actual female preferences

for a wide range of novel stimuli emerged
simply because of selection for mate
recognition (discriminating between a
conspecific call and noise). Earlier studies
training neural networks for mate
recognition also produced ‘hidden
preferences’. However, these studies used
extremely simple training stimuli6,7 and
were not designed to be directly compared
to real female responses. Second, the
criticism that neural networks
oversimplify reality8,9 is now directly
challenged: Phelps and Ryan were able to
predict the behaviour of real females even
when they used smaller networks with
only eight neurons per ‘hidden’ layer4. In a
broader context, the ability of neural
networks to mimic real females can now
be put to the test. Will networks trained
using calls from other acoustically
signalling taxa, such as crickets, birds and
other frogs, also successfully predict
female preferences? Such networks have
already successfully predicted simple
stimulus–response relationships10.

Replaying evolutionary history

Using the uncanny ability of networks to
emulate real female frogs, Phelps and
Ryan3 then tested whether the
evolutionary history of mate recognition
systems affects current preferences.
Again, they selected networks to
discriminate target frog calls from noise.
This time, however, the networks were
trained to learn four successive calls.
Initially, the networks were trained to
recognize the first call with a pre-specified
degree of accuracy. Once done, the
discrimination task was changed to the
ability to recognize the second call with
the same level of accuracy, and so on. This
simulates the history of mate recognition
evolution, with the caveat that female
mate recognition is unlikely to have
evolved by ‘catching up’ to instantaneous
changes in male signals.

Phelps and Ryan imposed three
different training histories on the
networks, and then selected all networks
to discriminate a modern P. pustulosus
call from a noise stimulus with the same
degree of accuracy. Thus, the recent
history of the networks was identical, and
it was only their deeper history that
differed. In the ‘mimetic’ history, the
network was trained in a sequence that
matched the hypothetical evolution of
male calls. The first call was the
hypothetical ancestral call for the 
P. pustulosus species group. Thereafter,
the reconstructed ancestral calls at nodes
moving up the clade to the extant 
P. pustulosus call were used as the target
stimuli. (If these calls are poor estimates
of the true ancestral calls, the subsequent
findings are even more impressive.) 
With a ‘random’ history, three randomly
picked ancestral or extant calls from the 
P. pustulosus clade were used. Consistent
differences in the behaviour of networks
trained with a mimetic versus a random
history could be taken to reveal the effect
of history on receiver evolution. The only
problem with this approach is that the
random history networks are exposed to a
greater range of sound stimuli. They
might simply evolve greater
permissiveness. What we really want to
know is whether the history of a network
matters while controlling for
permissiveness. To do this, Phelps and
Ryan used a third ‘mirror’ history training
regime. Using principal component
analysis, they obtained 12 independent
variables that accounted for most of the

Box 2. Neural networks

A neural network is a mathematical model, run on a computer, which learns to distinguish
patternsa–f. It mimics a real neural system and consists of layers of highly interconnected
cells (neurons). A simple network comprises an input layer where each neuron is or is not
activated by the stimulus, a ‘hidden’ layer for processing and an output layer. The level of
activation of a receiving neuron depends on the activity of the sender neuron and the
weighting given to the connection between them. One training method uses a ‘genetic
algorithm’ analogous to the process of natural selectiong. To start, a set of networks is
generated that differ only in the weighting given to various connections. One measure of
fitness is the difference in the final output of each network when offered the target versus
control stimuli. This is an index of the ability of a network to correctly identifying target
stimuli. The fitness of a network determines the probability that it will enter the next
generation. Networks can then be treated as chromosome-like strings of values
representing specific neuron–neuron connection weights. A mutation process is run and
small changes in the weightings are made at random points along the ‘chromosome’.
‘Swapping’ whole sections between the ‘chromosomes’ of different networks simulates
recombination. Once complete, the new generation of networks is re-assembled and their
discrimination abilities (fitness) calculated again. The process is repeated for each
generation until the desired degree of accuracy is achieved. It is known that both the
training protocola and the nature of the control stimulif can influence the final outcome.
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variation among calls. For each principle
component, the difference between the
ancestral call and the extant P. pustulosus
call in the mimetic history was calculated.
Mirror calls were created by
reconstituting the call based on sign-
reversed principle components. Each
mirror and ancestral call was, therefore,
equidistant from the extant P. pustulosus
call in 12-dimensional space.

The effect of evolutionary history on
mating preferences was tested by
comparing the behaviour of networks
with that of real female túngara frogs
using the same set of 34 stimuli as in the
earlier study4. The results were
unequivocal. The mimetic history
networks showed similar responses to
real females (r = 0.56), whereas mirror
and random history networks did less
well (r = 0.32 and 0.20). The ability of the
mimetic network to predict the responses
of real females was significantly better
than that of the other two networks.
History did matter.

Historic and adaptive explanations
are conceptually distinct, but that does
not mean that one can be ignored while
the other is studied (Box 1). There is no
doubt that adaptive consequences of
female choice could, if incorporated,
affect the outcome of Phelps and Ryan’s
network models. Many of the observed
differences between female túngara frog
call preferences and those of the network
models might then be explained.
However, if the potential sources of error
and artefact are considered, the fact that

a simple network can fairly accurately
predict the current responses of female
túngara frogs to many stimuli without
recourse to data on direct and indirect
fitness benefits is impressive. It reminds
us that the simple task of mate
recognition (discriminating a conspecific
call from noise), when combined with an
evolutionary history, can tell us a great
deal about female mating preferences
and the likely direction in which sexually
selected male traits evolve. With these
new studies3,4 tests of sensory
exploitation hypotheses have moved far
beyond the initial (and somewhat weak)
generalization that the evolution of
mating preferences might precede that
of preferred traits11–13. Moreover, these
studies restore some perspective to a
field dominated by tests of hypotheses
invoking current adaptive value. Neural
networks provide an opportunity to
determine whether specific, but
historically deep-seated, discriminatory
tasks (such as mate recognition or signal
detection) have had a strong or weak
influence on currently observable
mating preferences.

References

1 Møller, A.P. and Alatalo, R.V. (1999) Good-genes
effects in sexual selection. Proc. R. Soc. London
B Biol. Sci. 266, 85–91

2 Wedell, N. and Tregenza, T. (1999) Successful
fathers sire successful sons. Evolution 53,
620–625

3 Phelps, S.M. and Ryan, M.J. (2000) History
influences signal recognition: neural network
models of túngara frogs. Proc. R. Soc. London B
Biol. Sci. 267, 1633–1639

4 Phelps, S.M. and Ryan, M.J. (1998) Neural
networks predict response biases of female
túngara frogs. Proc. R. Soc. London B Biol. Sci.
265, 279–285

5 Tinbergen, N. (1963) On aims and methods of
ethology. Z. Tierpsychol. 20, 410–433

6 Enquist, M. and Arak, A. (1993) Selection of
exaggerated male traits by female aesthetic
senses. Nature 361, 446–448

7 Johnstone, R.A. (1994) Female preferences for
symmetrical males as a by-product of selection
for mate recognition. Nature 372, 172–175

8 Cook, N.D. (1995) Artifact or network evolution?
Nature 374, 313–314

9 Dawkins, M.S. and Guilford, T. (1995) An
exaggerated preference for simple neural
network models of signal evolution. Proc. R. Soc.
London B Biol. Sci. 261, 357–360

10 Ghirlanda, S. and Enquist, M. (1998) Artificial
neural networks as models of stimulus control.
Anim. Behav. 56, 1183–1189

11 Endler, J.A. and Basolo, A.L. (1998) Sensory
ecology, receiver biases and sexual selection.
Trends Ecol. Evol. 13, 415–420

12 Shaw, K. (1995) Phylogenetic tests of the sensory
exploitation model of sexual selection. Trends
Ecol. Evol. 10, 117–120

13 Basolo, A.L. (1995) Phylogenetic evidence 
for the role of a preexisting bias in sexual
selection. Proc. R. Soc. London. B Biol. Sci. 259,
307–311

Michael D. Jennions*

Division of Botany and Zoology, Australian
National University, Canberra, ACT 0200,
Australia.
*e-mail: michael.jennions@anu.edu.au

Robert Brooks
School of Biological Science, The University
of New South Wales, Sydney, NSW 2052,
Australia.

It is ironic that an organelle that is 

pivotal for the function of male gametes 

is inherited by sons only from their mother.

A recent study of human fertility has

provided the first definitive evidence 

that mitochondrial DNA mutations can

reduce male fertility but with little or no

effect on females. These results present 

the possibility that the viability of 

small populations might be reduced 

by increases in the frequency of mtDNA

genotypes that lower the fitness of 

males.

Mitochondria are generally transmitted
maternally so that deleterious mutations
that affect only males will not be subject to
natural selection (Fig. 1)1. Sperm are
powered by a group of mitochondria at the
base of the flagellum, and even a modest
reduction in power output by the
mitochondria might reduce sperm
mobility and male fertility2. It is,
therefore, possible that mitochondrial
DNA (mtDNA) mutations might reduce
male fertility but have little effect on
females.

In 1996, Frank and Hurst1 pointed out
that the maternal inheritance of mtDNA
created a male–female asymmetry in the
expected severity of mitochondrial
mutations. They showed that the expected
equilibrium frequency of a mitochondrial
mutation in a large population is
approximately q = µ/sf, where µ is
mutation rate and 1−sf is the relative
fitness of a female with the mutation1. 
For example, consider a mutation with 
a mutation rate of 10−4 that affects sperm
mobility and reduces male fertility by 

Mitochondrial mutations may decrease population

viability
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