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Abstract 

Collaborative efforts to directly replicate empirical studies in the medical and social sciences have revealed alarmingly 
low rates of replicability, a phenomenon dubbed the ‘replication crisis’. Poor replicability has spurred cultural changes 
targeted at improving reliability in these disciplines. Given the absence of equivalent replication projects in ecology 
and evolutionary biology, two inter‑related indicators offer the opportunity to retrospectively assess replicability: 
publication bias and statistical power. This registered report assesses the prevalence and severity of small‑study (i.e., 
smaller studies reporting larger effect sizes) and decline effects (i.e., effect sizes decreasing over time) across ecology 
and evolutionary biology using 87 meta‑analyses comprising 4,250 primary studies and 17,638 effect sizes. Further, 
we estimate how publication bias might distort the estimation of effect sizes, statistical power, and errors in magni‑
tude (Type M or exaggeration ratio) and sign (Type S). We show strong evidence for the pervasiveness of both small‑
study and decline effects in ecology and evolution. There was widespread prevalence of publication bias that resulted 
in meta‑analytic means being over‑estimated by (at least) 0.12 standard deviations. The prevalence of publication bias 
distorted confidence in meta‑analytic results, with 66% of initially statistically significant meta‑analytic means becom‑
ing non‑significant after correcting for publication bias. Ecological and evolutionary studies consistently had low 
statistical power (15%) with a 4‑fold exaggeration of effects on average (Type M error rates = 4.4). Notably, publication 
bias reduced power from 23% to 15% and increased type M error rates from 2.7 to 4.4 because it creates a non‑ran‑
dom sample of effect size evidence. The sign errors of effect sizes (Type S error) increased from 5% to 8% because of 
publication bias. Our research provides clear evidence that many published ecological and evolutionary findings are 
inflated. Our results highlight the importance of designing high‑power empirical studies (e.g., via collaborative team 
science), promoting and encouraging replication studies, testing and correcting for publication bias in meta‑analyses, 
and adopting open and transparent research practices, such as (pre)registration, data‑ and code‑sharing, and trans‑
parent reporting.
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Introduction
Replicable prior findings are the foundation of cumula-
tive scientific research. However, large-scale collaborative 
attempts to repeat studies have demonstrated that prior 
findings often fail to replicate in the medical and social 
sciences [1–3]. This raises concerns about the reliability 
of previously published studies (often referred to as the 
‘replication crisis’ [4]). A similar issue of low replicability 
is likely to occur in ecology and evolutionary biology [5] 
(see also [6]). Yet, systematic assessments of replicability 
in this field are exceedingly rare [6, 7] perhaps because of 
the absence of strong incentives towards conducting rep-
lication studies [7, 8], and for logistical reasons (e.g. dif-
ficulties of conducting studies of rare species or remote 
ecosystems [9, 10]).

There are, however, two inter-related indicators that 
can be used to retrospectively gauge replicability in ecol-
ogy and evolutionary biology: publication bias and sta-
tistical power. Publication bias and low statistical power 
increase the occurrence of unreliable effect size esti-
mates that cannot be replicated. Publication bias com-
monly occurs when studies with statistically significant 
results are published more frequently than those with 
statistically non-significant findings (also referred to as 
‘file-drawer problem’ [11]) or are published more quickly 
[12, 13]. More rapid publication of statistically significant 
results can also lead to a decline in reported effects over 
time (‘decline effect’ [12, 13]). When statistically signifi-
cant effects are preferentially published, smaller studies 
will tend to report larger effect sizes (known as ‘small-
study effects’ [14]). Statistical power, by definition, is the 
likelihood of identifying a ‘true effect’ when it is present. 
It is often used as a proxy of ‘replicability probability’ 
(but see [15]), as studies with high statistical power are 
more likely to yield findings that can be replicated by 
other researchers compared to studies with low statistical 
power [16–18].

Several meta-research studies in ecology and evolu-
tionary biology have investigated the prevalence of pub-
lication biases and low statistical power. Jennions and 
Moller [12] reported a statistically significant decline 
effect in a survey of 44 ecology and evolutionary biol-
ogy meta-analyses that had been published in 2002. 
Using 52 meta-analyses published before 2000, Barto and 
Rillig [19] reached a similar conclusion. In a cumulative 
meta-analysis, Crystal-Ornelas and Lockwood [20] also 
identified a statistically significant decline in the magni-
tude of the effect of invasive species on species richness, 

using 240 papers published between 1999 and 2016. In 
their work, this decline effect was present consistently 
regardless of taxonomic groups, invasion time, or journal 
quality. Twenty years ago, statistical power in 10 ecol-
ogy, evolution, and behaviour journals was estimated at 
13–16% for small effects and 40–47% for medium effects 
(where small effects are r = 0.1 and medium effects are 
r = 0.3; sensu Cohen [21]) [22]. Even lower statistical 
power was estimated for the journal Animal Behaviour 
in 1996, 2003, and 2009 (7–8% and 23–26% to detect 
Cohen’s small and medium effect sizes, respectively [23]).

Despite earlier efforts in ecology and evolutionary biol-
ogy [24], the field still lacks a systematic overview of the 
extent to which different forms of publication bias would 
distort the estimation of true effects. Further, no studies 
have evaluated how such distorted effect sizes prevent 
us from correctly estimating statistical power. The sta-
tistical power of a given study depends on sample size 
and the estimate of corresponding ‘true’ effect size (e.g. 
a larger effect size leads to a higher power; see Fig. 1A). 
Therefore, to avoid overestimating the statistical power 
of a given study, an unbiased proxy of the ‘true’ effect 
size should be used. Contrastingly, previous attempts in 
ecology and evolution often used Cohen’s benchmarks to 
quantify statistical power for a given study [22, 23]. Yet, 
these benchmarks were derived from Cohen’s qualitative 
intuitions for studies in the social sciences rather than 
a quantitative synthesis of the representative literature 
[25]. Cohen’s benchmarks are arbitrary, and not neces-
sarily applicable to ecological and evolutionary studies. 
As with exemplar studies in other fields [16], ‘true’ effects 
can be estimated via meta-analytic approaches and pref-
erably corrected for potential publication bias [26, 27]. 
Using publication bias-corrected effect size estimates as 
‘true’ effects would, more accurately, quantify statisti-
cal power as well as the two related, yet underappreci-
ated, statistical errors: Type M and S errors (Fig. 1B and 
C; [28]). Type M error, also known as exaggeration ratio 
(magnitude error), represents the ratio between an esti-
mated effect and a ‘true’ effect, whereas Type S error rep-
resents the probability of attaining statistical significance 
in the direction opposite to the true effect [29]. No study 
has yet quantified these two quantities systematically 
across the field of ecology and evolutionary biology.

Here, we capitalise on the rapid growth of ecological 
and evolutionary meta-analyses to systematically assess 
the extent to which patterns consistent with publica-
tion biases are common across the fields of ecology and 
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evolutionary biology, and, if attributed to actual publica-
tion bias, their impacts on estimates of effect size, sta-
tistical power, and  Type M and S errors [30]. First, we 
test for the presence and severity of two indices of pub-
lication bias (i.e. small-study effects and decline effects) 
at two levels: (i) the within-meta-analysis level using a 
newly proposed multilevel meta-regression method and 
(ii) the between-meta-analysis level using second-order 
meta-analyses (i.e. meta-meta-analyses). Second, we cor-
rect for these publication biases and quantify the degree 
of decline in bias-corrected effect-size magnitude. Finally, 
we use uncorrected and bias-corrected mean effect sizes 
as proxies of the ‘true’ effect to assess statistical power, 
Type M and S errors in ecology and evolutionary biology 
both at the primary study (effect-size) and the synthesis 
(meta-analysis) level.

Methods
Before submission of stage 1 of this registered report, we 
finished collection (‘Data collection’ section), retrieval, 
and cleaning (‘Data retrieval and cleaning’ section) of 
data from a pre-existing dataset [31]. After this stage 1 
registered report was accepted, we commenced the sta-
tistical analysis process (‘Statistical analysis’ section).

Database
Data retrieval and cleaning
By checking the main text, supplementary materials, 
and/or online data repositories (e.g. Dryad, GitHub, 
Open Science Framework) of the 102 meta-analytic 
papers, and emailing corresponding authors, if necessary, 
we were able to include 80 papers that reported essential 
information for our statistical analyses. These 80 papers 

contained 108 independent meta-analyses. Among these 
107, 36 meta-analyses used standardised mean difference 
(SMD) which includes some well-known estimators such 
as Hedges’ g or Cohen’s d  [32]; 20 of these meta-analy-
ses provided raw data (i.e. descriptive statistics: mean, 
standard error or deviation, and sample size) whereas the 
remaining 16 cases provided only effect sizes and vari-
ance. Twenty meta-analyses used the log response ratio 
(lnRR [33]; also known as the ratio of means, ROM): 
10 cases with raw data, and 10 cases without raw data. 
Thirty-one cases used the correlation coefficient or its 
Fisher’s transformation, Zr (given that the variance of Zr 
and sample size is convertible, all cases of Zr were with 
raw data). All correlation coefficients were converted to 
Zr to better approximate normal errors [34]. The remain-
ing 20 meta-analyses used other effect size metrics, such 
as heritability (h2  [35]), regression slope (e.g. reaction 
norm or selection gradient [36, 37]), 2-by-2 binary data 
(e.g. log odds and risk ratios [38]), raw mean difference 
[39], and non-standard metrics (proportion [40]).

We decided to only include meta-analytic cases using 
SMD, lnRR, and Zr in our datasets because, in addition 
to being the most commonly used effect sizes in ecology 
and evolutionary biology [41, 42], they share statistical 
properties necessary to fit a formal meta-analytic model: 
(i) they are ‘unit-less’, which allows comparisons of stud-
ies originally using different units, (ii) they are (asymp-
totically) normally distributed, and (iii) they have readily 
computable (unbiased) sampling variance [34]. To keep 
our datasets independent, we only used the effect sizes 
in their original forms, although data augmentations (e.g. 
conversions between Zr to SMD) could maximise the 
statistical power of the following statistical analyses by 

Fig. 1. Statistical power, Type S and M errors as a function of the ‘true’ effect size (the alpha level is fixed at 0.05). The generic form of effect sizes 
(e.g. SMD, lnRR, Zr) are simulated from 0 to 1 with a fixed standard error (0.25). These panels (A–C) show that studies investigating larger true effects 
have higher power (A) and lower rates of Type M (B) and Type S (C) errors. If a study suffers from publication bias, the effect size is likely to be 
exaggerated, and consequently, the corresponding statistical power, Type M and S errors would be underestimated
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maximising the number of sample sizes per dataset (in 
this case, the number of effect sizes). Therefore, our final 
three datasets consisted of (1) 36 meta-analytic cases of 
SMD, (2) 20 cases of lnRR, and (3) 31 cases of Zr (Fig. 2). 
For each primary study included in the final dataset, we 
retrieved four key variables: (i) effect sizes reported (i.e. 
SMD, lnRR, or Zr), (ii) standard errors (or sampling vari-
ances) of each effect size (to test for small-study effects), 
(iii) sample sizes per condition where possible (i.e. exper-
imental group versus control group for SMD and lnRR); 
sample sizes are used to create a predictor to test and 
correct for small-study effects (i.e. ‘effective sample size’; 
see the ‘Second-order meta-analysis’ section for details), 
and (iv) publication year (to test for a decline effect).

Statistical analysis
Data collection
We used a recent meta-analytic database that had been 
collected to evaluate the reporting quality of systematic 
reviews and meta-analyses published in ecology and 
evolutionary biology [31]. The inclusion and screening 
criteria identified meta-analyses that were broadly rep-
resentative of meta-analyses published in ecology and 
evolutionary biology journals from 2010-2019. In brief, 
the database creators compiled a list of ‘Ecology’ and/
or ‘Evolutionary Biology’ journals via the categories of 
the ISI InCites Journal Citation Reports®. Within the 
included journals, they searched Scopus using the string 
‘meta-analy*’ OR ‘metaanaly*’ OR ‘meta-regression’. They 
restricted the search to articles published from January 
2010 to 25 March 2019. Search results were then filtered 
to the 31 journals most frequently publishing meta-
analyses. By taking a random sample of studies within 
each journal, a total of 297 papers was returned. After 
screening (search records, and inclusion and screen-
ing criteria are available at [31]), the database included a 
representative sample of 102 ecological or evolutionary 
meta-analyses.

Multilevel meta‑analytic modelling
We used multilevel meta-analytic approaches to (i) esti-
mate the meta-analytic overall mean (i.e. uncorrected 
effect size estimates), (ii) detect potential publication bias 
(i.e. test small-study and decline effects), and (iii) correct 
for publication bias for each meta-analysis included in 
our datasets (Fig. 2).

Estimating uncorrected effect sizes To obtain 
uncorrected effect sizes for each meta-analysis (i.e. 
within-meta-analysis level), we fitted intercept-only mul-
tilevel meta-analytic models with SMD, lnRR, and Zr 

as our response variables, as in Equation  1  [42]. Equa-
tion 1 can account for dependent data by modelling both 
between-study variance (heterogeneity) and within-study 
variance (residual). It was written as:

where ESji is the extracted effect size, either SMD, lnRR, 
or Zr; β0[overall] is the intercept, representing the estimate 
of overall effect (i.e. meta-analytic estimate of effect size); 
sj = the study-specific (between-study) effect of study j; 
oji = the observation-level (within-study) effect for the 
effect size i (used to account for residual heterogene-
ity); mji = the measurement (sampling) error effect for 
the effect size i. Between- and within-study effects are 
normally distributed with mean 0 and variance, σ2 (i.e. 
N 0, σ 2  ). In Equation 1, effect size (ESji) and sampling 
variance (mji) can be calculated from the meta-analytic 
data. Using the restricted maximum likelihood (REML) 
method, we can obtain (approximately) unbiased esti-
mates of variance parameters σ2 for between- and within-
study effects (sj and oji) [43]. With the REML estimate of 
σ2, we can obtain the maximum likelihood estimate of the 
model coefficients (i.e. β0[overall]). These estimated model 
coefficients represent the (uncorrected) overall meta-
analytic means for SMD, lnRR, or Zr. The model fitting 
was implemented via the (rma.mv) function from the 
metafor R package (version 3.4-0) [44].

Detecting publication bias To test for patterns con-
sistent with publication bias within each meta-analysis, 
we used a multi-moderator multilevel meta-regression 
model (an extended Egger’s regression; cf. [45]). This 
approach deals with two common issues in ecological 
and evolutionary datasets: (i) using a multilevel model 
to control for data dependency [46], and (ii) using a 
regression method with multiple moderators to account 
for between-study heterogeneity [47]. We adopted this 
approach to test the presence of small-study and decline 
effects, respectively. This was written as:

where β0[bias − corrected] is the intercept, representing bias-
corrected overall effect/meta-analytic estimate of effect 
size (see more details below); errori is the uncertainty 
index of effect size (i.e. sampling error of effect size, 
sei), and β1[small − study] is the corresponding slope and an 
indicator of small-study effects; yeari is the publication 
year, yearlatest is the latest year of published papers, and 
β2[time − lag] is the corresponding slope and an indicator of 
decline effect (i.e. time-lag bias).

(1)ESji = β0[overall] + sj + oji +mji,

(2)

ESji =�0[bias−corrected] + �1[small−study]errori

+ �2[time−lag]

(

yeari − yearlatest
)

+ sj + oji +mji,
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Fig. 2. The workflow showing the data compilation, statistical modelling processes, and our aims. Using the datasets containing 87 independent 
meta‑analyses (36 SMD, 20 lnRR and 31 Zr cases, respectively), we used a two‑step modelling procedure to assess (i) the estimated prevalence and 
severity of publication bias in ecology and evolutionary biology and (ii) how such publication bias affects the estimates of effect size, statistical 
power, Type M and S errors. In the first step (i.e. within‑meta‑analysis level), multilevel meta‑analytic approaches will be used to estimate the 
overall mean (used for power and errors calculations), and test and adjust for publication bias for each meta‑analytic case. In the second step (i.e. 
between‑meta‑analysis level), the estimates from the first step were statistically aggregated using either mixed‑effects models or random‑effects 
meta‑analytic models (i.e. secondary meta‑analysis). β0 is the meta‑analytic overall mean (i.e. β0[overall] in Equation 1), which signifies the uncorrected 
effect size estimate if publication bias exists but is not corrected. β1 and β2 are the indicators of small‑study effects and decline effects (equivalent 
to β1[small − study] and β1[time − lag] in Equation 2). η0[u] is the standardised β0. (i.e. η0[overall]). η0[c] is the standardised bias‑corrected meta‑analytic overall 
mean (i.e. η0[bias − corrected] in Equation 6). η1[small − effect], η2[time − lag] are standardised model coefficients corresponding to β0, β1 and β2 (i.e. η1[small − effect] 
and η2[time − lag] in Equation 6)
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When assuming there is no small-study effect (i.e. 
errori = 0) and decline effect (i.e. yeari − yearlatest = 0), 
the intercept β0[bias-corrected] in Equation  2 becomes a 
conditional estimate that can be interpreted as the bias-
corrected overall effect (i.e. the estimate of ‘true’ effect 
which is distinct from the unconditional estimate of 
β0[overall] in Equation 1). We centred the ‘year’ variable by 
subtracting each year (yeari ) from the latest yearlatest to 
set the latest year as the intercept, β0[bias − corrected]. This 
process allowed the estimate of true effect (i.e. β0[bias − cor-

rected] in Equation  2) to be conditional on yeari = year‑
latest so that β0 was least affected by a decline effect if it 
existed. Further, we used a sampling error equivalent 
√

1/ñi =
√
(ne + nc)/nenc ) to replace sei when fitting 

SMD and lnRR where possible ( 4ñi is referred to as an 
effective sample; ne is the sample size of the experimen-
tal group, nc is the sample size of the control group [45]). 
This can correct for the ‘artefactual’ correlation between 
ESji and errori as the point estimate of SMD and lnRR are 
inherently correlated with their sampling variances (see 
Table 3 in [34], and Equation 10 in [48]).

A small-study effect is statistically detected if Equation  2 
has a statistically significant β1[small − study] (i.e. p-value < 
0.05). Similarly, the decline effect (i.e. time-lag bias) is 
indicated by a statistically significant β2[time − lag]. Depend-
ing on the specific phenomenon tested, β1[small − study] and 
β2[time − lag] might be expected to be positive or negative 
when publication bias exists. For example, for an effect that 
is expected to be positive, a small-study effect and decline 
effect would be expressed in a positive value of β1[small − study] 
(i.e. small-size non-statistically significant effects and 
small-size statistically significant negative effects are under-
represented)) and negative value of β2[time − lag] (i.e. overall 
effect size declines over time), respectively. In such a case, 
a slope (β1[small − study] or β2[time − lag]) with opposing direc-
tion (unexpected sign) indicates no detectable publication 
bias and subsequently does not require correction for such 
a bias. The magnitude of the slope represents the severity 
of the small-study effect or decline effect. Therefore, using 
Equation 2, we were able to detect the existence of publica-
tion bias and identify its severity for each meta-analysis and 
each effect size statistic.

Correcting overall estimates for publication bias To 
avoid the biased estimate of β0[bias − corrected], we fit-
ted Equation  3 when detecting a statistically significant 
β0[bias − corrected] in Equation 2. Equation 3 was written as:

(3)

ESji =�0[bias−corrected] + �1[small−study]error
2
i

+ �2[time−lag]

(

yeari − yearlatest
)

+ sj + oji +mji,

In contrast to Equation  2, Equation  3 used a quad-
ratic term of uncertainty index (i.e. sampling variance 
vi or 1/ñi ) to alleviate the downward bias of an effect 
size estimate (for explanations see [45, 49]). Theoreti-
cally, this procedure provided an easy-to-implement 
method to correct for publication bias for each meta-
analysis (i.e. the conditional estimate of intercept in 
Equation 3). In practice, however, there were two dif-
ferent types of β0[bias − corrected] estimates to consider. 
This is because high heterogeneity [47] can lead the 
signs of the slopes (β1[small − study] and β2[time − lag]) to 
be opposite from that expected from publication bias 
[45]. We would subsequently misestimate β0[bias − cor-

rected] if slopes with unexpected signs are included in 
Equations 2 and 3.

Depending on the signs of the slopes (β1[small − study] 
and β2[time − lag]), there were two types of estimated 
β0[bias − corrected]. We used a decision tree (Fig.  3) to 
obtain the estimate of each type of β0[bias − corrected] for 
each meta-analytic case. The function of the decision 
tree was that, if the slopes (β1[small − study] and β2[time − lag]) 
had unexpected signs, we took out the correspond-
ing slope-related term(s) from the full models to form 
reduced models (Equations 4 and 5) to better estimate 
β0. The reduced models were written as Equations  4 
and 5, respectively:

Specifically, the first type of estimate of β0[bias − cor-

rected] was obtained by fitting Equation  2 or 3 (termed 
as full models). That included all cases of β0[bias − cor-

rected] without consideration of the signs of β1 and β2 
(i.e. conditional β0[bias − corrected] estimated from the 
full model; see Fig.  3). The second type of estimate of 
β0[bias − corrected] was obtained under the following four 
scenarios: (i) β0[bias − corrected] estimated under expected 
signs of β1[small − study] and β2[time − lag] (i.e. conditional 
β0[bias − corrected] estimated from the direction-controlled 
full model; see Fig. 3), which meant a co-occurrence of 
a small-study effect and a decline effect, (ii) β0[bias − cor-

rected] estimated under the expected sign of β1[small − study] 
and the unexpected sign of β2[time − lag], which signalled 
the existence of a small-study effect but no decline 
effect (i.e. conditional β0[bias − corrected] estimated from 

(4)ESji = �0[bias−corrected] + �1[small−study]errori + sj + oji +mji ,

(5)

ESji =�0[bias−corrected] + �2[time−lag]

(

yeari − yearlatest
)

+ sj + oji +mji,
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reduced model 1; see Equation  4 and Fig.  3), (iii) 
β0[bias − corrected] estimated under the unexpected sign 
of β1 and the expected sign of β2, which indicated the 
occurrence of a decline effect but no small-study effect 
(i.e. conditional β0[bias − corrected] estimated from reduced 
model 2; see Equation 5 and Fig. 3), and (iv) β0[bias − cor-

rected] estimated under unexpected signs of β1[small − study] 
and β2[time − lag], which suggested little concerns about a 
small-study effect or a decline effect.

Second‑order meta‑analysis
In this section, we statistically aggregated the above-
mentioned regression coefficients (i.e. β0[bias − corrected], 
β1[small − study] and β2[time − lag]) to (i) reveal the pat-
terns of potential publication bias across the fields of 

ecology and evolutionary biology, and (ii) quantify the 
extent to which publication bias might cause a reduc-
tion in effect-size magnitude across meta-analyses 
(Fig. 2).

Estimating the overall extent and severity of publica‑
tion bias To allow for aggregations of β1[small − study] (i.e. 
an indicator of small-study effect) and β2[time − lag] (i.e. 
an indicator of decline effect) over different effect size 
metrics (i.e. SMD, lnRR, and Zr), we standardised coef-
ficients to eliminate scale-dependency [50]. This was 
achieved by z-scaling (i.e. mean-centring and dividing 
by the standard deviation) errori, yeari − yearlatest, and 
standardising the response variable ESji by dividing by 
the standard deviation without mean-centring, prior to 
modelling, as given by Equation 6:

Fig. 3. The decision tree used to obtain the estimate of the ‘unbiased’ effect (i.e. conditional β0). First, use a two‑step procedure to estimate β0, β1 
and β2 from the full model (Equations 2 or 3). Then, depending on whether the signs of slopes (β1 and β2) are opposite from what will be expected 
from publication bias (caused by a high amount of unaccounted heterogeneity), there are two types of estimates of β0. The first type includes all 
β0 regardless of their signs (β1 and β2); the second type of estimated β0 has four scenarios. Scenario 1 = only select β0 with expected signs of β1 
and β2 from the full model; Scenario 2 = employ reduced model 1 (Equation 4) to re‑estimate β0 where β1 has an unexpected sign, while β2 has an 
expected sign; Scenario 3 = employ reduced model 3 (Equation 5) to re‑estimate β0 if β1 has an expected sign, while β2 has an unexpected sign; 
Scenario 4 = use β0 from the null model (Equation 1) when both β1 and β2 have unexpected signs (i.e. without the small‑study effects or decline 
effects). The symbols (β0, β1, and β2) are as in Fig. 2
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Equation 6 indicates that one standard deviation change 
in errori and yeari − yearlatest would change ESji by 
η1[small − effect] and η2[time − lag] standard deviations, respec-
tively. Further, to interpret β0 as a bias-corrected overall 
effect, β0 was set conditional on errori = 0 (i.e. without 
small-study effect) and yeari − yearlatest = 0 (i.e. with-
out decline effect). As such, we replaced z(errori) by 
z(errori) − z(error0) and replace z(yeari − yearlatest) by 
z(yeari) − z(yearlatest), as shown in Equation 7:

where z(error0) denotes the z-score when errori = 0, 
which is equal to 0−mean[errori]

SD[errori]
 ; z(yearlatest) is the z-score 

when yeari is the latest year. Likewise, to obtain the best 
estimate of standardised bias-corrected effects, we intro-
duced Equation 8 where a quadratic error term was used:

Therefore, fitting 8 created two datasets: (1) the 
full dataset containing η0[bias − corrected], η1[small − effect] 
and η2[time − lag] without consideration of their signs 
(standardised slopes of the first type estimate), and 
(2) the reduced dataset containing η0[bias − corrected], 
η1[small − effect] and η2[time − lag] with expected directions 
(standardised slopes of the second type estimate: sce-
narios 1–4, Fig. 3). We then conducted a series of sec-
ond-order meta-analyses to statistically aggregate these 
standardised regression coefficients across meta-analy-
ses [51, 52]. We employed a random-effects meta-ana-
lytic model with the inverse square of each coefficient’s 
standard error as weights to fit such second-order 
meta-analyses [44]. For both the full and reduced data-
bases, we obtained a weighted average of the regression 
coefficient η1[small − effect] (or η2[time − lag]) to indicate the 
occurrence of small-study effects (or decline effects) 
across the fields of ecology and evolutionary biology. 
To compare the severity of publication bias between 
different types of effect size, we further incorporated 
effect-size types as a moderator (i.e. a fixed factor or 
predictor with three levels: SMD, lnRR, and Zr) in 
these random-effects models.

Quantifying the reduction in effect‑size magnitude after 
controlling for publication bias Likewise, to quantify 
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the differences between uncorrected effect sizes and their 
bias-corrected estimates for the different types of effect-
size metrics, we required standardised estimates of these 
effect sizes to draw comparisons. The term η0[bias − cor-

rected] in the full dataset provided a standardised bias-
corrected effect size (i.e. an intercept estimated using the 
full model, where all cases of η1[small − effect] and η2[time − lag] 
were included regardless of their directions). Also, 
η0[bias − corrected] in the reduced dataset provided stand-
ardised bias-corrected effect sizes, which were obtained 
using expected directions of η1[small − effect] and η2[time − lag]. 
In contrast, the standardised uncorrected effect sizes 
were obtained via standardising ESji by dividing by stand-
ard deviation before fitting Equation 1 (that is, standard-
ised intercept in the null model: η0[overall]). We then used 
the absolute mean difference as a metric to quantify the 
reduction in effect-size magnitude following correction 
for publication bias, where the point estimate and sam-
pling variance was written as:

where γscorrected−effect and γsuncorrected−effect are the values 
of standardised uncorrected effect size (standardised 
η0[overall] in the null model) and its bias-corrected version 
(standardised η0[bias − corrected] in the full or reduced mod-
els), respectively; SEγscorrected−effect

 and SEγsuncorrected−effect
 are 

associated standard errors; r is the correlation between 
standard errors ( SEγscorrected−effect

vs. and SEγsuncorrected−effect
 ), 

which is assumed to be 1 because the two estimates 
should be strongly correlated.

Given that D is an absolute variable, it follows a ‘folded’ 
normal distribution because taking the absolute value 
will force probability density on its left side (x-axis < 0) to 
be folded to the right [53, 54]. The corresponding folded 
mean and variance could be derived from its ‘folded’ nor-
mal distribution as Equations 11 and 12:

where Φ is the standard normal cumulative distribu-
tion function (see more details in [53, 55]). Equations 9 
to 12 enable us to calculate Df and Var(Df) for both full 
and reduced databases. We used a random-effects 
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meta-analytic model ((rma.uni) function [44]) to syn-
thesise these Df with Var(D)f as sampling variance across 
meta-analyses. Also, we incorporated effect size type 
as a moderator to compare the differences in effect size 
reduction between SMD, lnRR, and Zr.

Estimating statistical power, and type M and S errors
We assessed the statistical power and Type M and S 
errors in the primary studies with experimental effects 
that were approximated by uncorrected and bias-cor-
rected effect sizes [27, 56]. Although meta-analyses can 
increase power over primary studies [57], they might 
still be underpowered to detect the true effect (i.e. 
p-value > 0.05 despite the existence of a true effect). 
Therefore, we also calculated the statistical power, Type 
M and S errors for each meta-analysis. To obtain aver-
age statistical power, and Type M and S errors at the 
primary study level, we used a linear mixed-effects 
model to aggregate over the estimates of power, and 
Type M and S errors from primary studies. We used 
the (lmer) function in the lme4 R package (version 1.1-
26) to fit these mixed-effects models [58], which incor-
porated the identity of the primary study as a random 
factor to account for between-study variation. Simi-
larly, we used a weighted regression to aggregate meta-
analysis level power, and Type M and S errors, with the 
number of effect sizes (k) within each meta-analysis as 
weights. We implemented the weighted regression via 
the base R function (version 4.0.3), (lm).

Deviations and additions
The Stage 2 of this registered report has three devia-
tions from the Stage 1 protocol. First, in the ‘Correct-
ing for overall estimates for publication bias’ section, 
the best estimate of the bias-corrected overall effect (i.e. 
model intercept β0[bias − corrected]) was initially planned to 
be obtained by a two-step procedure where when a zero 
effect exists (i.e. statistically non-significant β0[bias − cor-

rected]), uncertainty index (i.e. sampling error errori or 
√

1/ñi ) was used (Equation 2) to estimate β0[bias − corrected], 
while when a non-zero effect exists (i.e. statistically sig-
nificant β0[bias − corrected]), a quadratic term of uncertainty 
index (i.e. sampling variance vi or 1/ñi ) was used (Equa-
tion 3) to estimate β0[bias − corrected] [59, 60]. We decided to 
only use Equation  3 to estimate β0[bias − corrected] because 
there is no need to estimate β0[bias − corrected] when no sta-
tistically significant effect exists (Equation 2).

Second, in the ‘Estimating the overall extent and 
severity of publication bias’ section, we changed z-scal-
ing (i.e. mean-centring and dividing by the standard 

deviation) response variable ESji prior to model fitting 
to standardising response variable ESji by dividing by 
the standard deviation without mean-centring. This 
is because centring the response variable would make 
estimating model intercept (β0[bias − corrected]) unfeasible 
[50]. The same change was made in the ‘Quantifying the 
reduction in effect-size magnitude after controlling for 
publication biases’ section.

Third, we added a post hoc analysis where we 
removed the meta-analyses with statistically non-sig-
nificant mean effects and subsequently calculated the 
average statistical power, Type M and S error rates. The 
reason why adding this post hoc analysis was that the 
underlying true effect sizes in some meta-analyses were 
likely to be so trivially small (and biologically insignifi-
cant) that corresponding power calculation was mean-
ingless. In such a case, if we included those effects when 
estimating average power across meta-analyses in ecol-
ogy and evolution, we would get a downwardly biased 
average power estimate. Note that relevant results were 
reported in Supplementary Material (Table S4).

Results
The pattern of small‑study effects in ecology 
and evolutionary biology
Within‑meta‑analysis level
Of the 87 ecological and evolutionary meta-anal-
yses  tested, 15 (17%) meta-analyses showed evi-
dence for small-study effects  (i.e. statistically 
significant β1[small − study]; see Fig.  4A),  where smaller 
studies reported larger effect sizes. Importantly, 
β1[small − study]  from 54 (62%) meta-analyses were in 
the expected direction (Fig.  4A), indicating that these 
meta-analyses exhibited a (statistically non-significant) 
tendency for a small-study effect  (note that the likeli-
hood of a meta-analysis to show this tendency is 50% if 
there is no real effect).

Between‑meta‑analysis level
When conducting a second-order meta-analysis 
by  aggregating  the β1[small − study] obtained from the 87 
meta-analyses, there was a statistically significant pooled 
β1[small − study] (grand mean β1[small − study] = 0.084, 95% con-
fidence intervals (CI) = 0.034 to 0.135, p-value = 0.001, 
N = 87; Fig. 5A). This provides statistical evidence for the 
existence of small-study effects across the meta-analyses. 
Furthermore, the heterogeneity among the β1[small − study] 
estimates obtained from the 87 meta-analyses was low 
( σ 2

among−meta−analysis = 0.0050; I2among−meta−analysis = 
10%), indicating that  these results are highly generaliza-
ble. Three per cent of this heterogeneity could be 
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explained by the types of effect sizes (SMD, lnRR, Zr) 
being meta-analyzed ( R2

marginal = 0.031). The  non-ran-
dom pattern of the small-study effect was mainly driven 
by SMD (grand mean β1[small − study] = 0.091, 95% CI = 
0.018 to 0.165, p-value = 0.015, N = 36) and Zr (grand 
mean β1[small − study] = 0.119, 95% CI = 0.026 to 0.212, 
p-value = 0.013, N = 20), but not lnRR (grand mean 
β1[small − study] = 0.029, 95% CI = −0.072 to 0.130, p-value 
= 0.571, N = 31).

The pattern of decline effects in ecology and evolutionary 
biology
Within‑meta‑analysis level
Out of the 87 ecological and evolutionary meta-analyses 
reviewed, 13 (15%) revealed evidence of a decline effect, 
where the effect sizes significantly decreased over time 
(Fig.  4B). Additionally, 54 (62%) of the meta-analyses 
showed a statistically non-significant decline in effect 
size over time.

Between‑meta‑analysis level
There was a statistically significant pooled β2[time − lag] 
(grand mean β2[time − lag] = −0.006, 95% CI = −0.009 to 
−0.002, p-value < 0.001; Fig.  6A)  across 87 

meta-analyses, providing statistical  evidence for the 
existence of decline effects. The estimates of β2[time − lag] 
were homogeneous across these meta-analyses, indicat-
ing high generalizability of the results, with a low relative 
heterogeneity ( σ 2

among−meta−analysis = 0.0001; 
I2among−meta−analysis < 1%). Five per cent of that heteroge-
neity could be explained by the types of effect sizes 
( R2

marginal = 0.05); SMD and Zr exhibited a statistically 
significant pattern of decline effect (SMD: pooled 
β2[time − lag] = −0.005, 95% CI = −0.010 to −0.001, 
p-value = 0.013, N = 36; Zr: pooled β2[time − bias] = 
−0.008, 95% CI = −0.015 to −0.001, p-value = 0.023, N 
= 31; Fig.  6B), but lnRR did not (pooled β2[time − bias] = 
−0.004, 95% CI = −0.010 to 0.003, p-value = 0.289, N = 
20).

The inflation of effect size estimates and distortion 
of meta‑analytic evidence by publication bias
Among the 87 meta-analyses examined, the estimated 
absolute mean difference between the original (uncor-
rected) effect size (β0[overall]) and its bias-corrected 
version (β0[bias − corrected]) was statistically significant 
(pooled D = 0.225, 95% CI = 0.180 to 0.269, p-value < 
0.001; Fig. S1A). An overestimation of 0.189, 0.195 and 
0.333 standard deviation units  were found in SMD, 

Fig. 4. The percentage of ecology and evolutionary meta‑analyses showing evidence of publication bias. A A small‑study effect (i.e. small 
non‑statistically significant effects and small statistically significant effects of opposite direction to the overall effect are underrepresented). B A 
decline effect (the magnitude of effect sizes changes over time). See more details in the legend of Fig. 3. All figures were drawn using the geom_
bar() function in ggplot2 R package (version 3.3.5) [61]
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lnRR, and Zr, respectively (Fig. S1B). After back-trans-
formation to the original scale, the publication bias 
led to an exaggeration of the estimates of SMD, lnRR, 
and Zr by an average of 0.217, 0.116 and 0.128 (Fig. 7), 
respectively. Additionally, after correcting for publica-
tion bias, 33 out of 50 initially statistically significant 
meta-analytic means became non-significant.

Statistical power and type S and M error rates
Sampling level (primary studies)
Overall, primary studies or single experiments (i.e. 
at the  sampling level) had a low  statistical power of 
only  23% to detect the ‘true’ effect, as indicated by the 
original (uncorrected) meta-analytic estimate of effect 
sizes, β0[overall]. This was found to be the case across the 
different types of effect sizes, with power of 19%, 24% 
and 28% for sampling level of SMD, lnRR, and Zr, respec-
tively (see Fig.  8 and Table S1). When bias correction 
was applied, the overall power to detect the ‘true’ effect 
(β0[bias − corrected]) decreased further to 15% (12%, 16%, and 

18% for sampling level of SMD, lnRR, and Zr, respec-
tively; see Fig. 8A and Table S1).

The primary studies infrequently showed incorrect esti-
mation of the signs of the true effect sizes (overall Type 
S error = 5%; Fig. 9 and Table S2). For example, the pri-
mary studies (i.e. at sampling level) using lnRR and SMD 
had only 5% and 6% probabilities of having a direction 
that was opposite to the meta-analytic mean estimated as 
β0[overall]. When correcting for publication bias the Type S 
error increased from 5% to 8%.

By contrast, the primary studies tended to exaggerate 
the magnitude of the meta-analytic mean estimated as 
β0[overall], due to the limitation of finite sample size (overall 
Type M error = 2.7; Fig. 10 and Table S3). For example, 
the magnitude of lnRR, SMD and Zr were overestimated 
by an average of 2.5, 3.5 and 2 times, respectively. When 
correcting for publication bias (β0[bias − corrected]), the Type 
M errors increased to 4 (3.5 for lnRR, 6 for SMD and 3.4 
for Zr).

Fig. 5. Orchard plots showing the distribution of the indicator of small‑study effect (model slope β1[small − study]) for each meta‑analysis and 
meta‑analytic aggregation of β1[small − study] (pooled β1[small − study]). (A) Pooled β1[small − study] across different meta‑analyses and different types of effect 
size, indicating the pattern of small‑study effects. (B) Pooled β1[small − study] for each type of effect size. Solid circles = β1[small − study] estimates obtained 
from each meta‑analysis; the size of each solid circle is proportional to its inverse standard error (i.e. precision). Open circles = pooled β1[small − study]. 
Thick error bars = 95% confidence intervals (CI). Thin error bars = prediction intervals (PIs). See more details in the legend of Fig. 2. All panels were 
made using orchard_plot() function in orchaRd R package (version 2.0) [62]
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Meta‑analysis level
On average, at the level of individual meta-analyses, lnRR 
and Zr had statistical power that was at or above the 
nominal 80% level for detecting the true effects estimated 
as β0[bias − corrected]. Specifically, the power was found to 
be 81% for both lnRR and Zr (Fig.  8 and Table S1). In 

contrast, the estimated power of SMD was only  41%, 
which falls short of the nominal 80% level. When detect-
ing true effects indicated by β0[bias − corrected], the statis-
tical power of each meta-analysis decreased further, 
with lnRR, SMD, and Zr decreasing to 63%, 25% and 51%, 
respectively.

Fig. 6. Orchard plots showing the distribution of the indicator of decline effects (model slope β2[time − lag]) for each meta‑analysis and meta‑analytic 
aggregation of β2[time − lag] (pooled β2[time − lag]). A Pooled β2[time − lag] across different meta‑analyses and different types of effect size, indicating the 
systematic pattern of decline effect. B Pooled β2[time − lag] for each type of effect size. See more details in the legend of Figs. 2 and 3. All panels were 
made using orchard_plot() function in orchaRd R package (version 2.0) [62]

Fig. 7. The magnitude of each meta‑analysis’ estimated effect size declines after correcting for publication bias. Nine of 20 meta‑analyses of lnRR, 
17 of 36 meta‑analyses of SMD and 14 of 31 meta‑analyses of Zr had corrected directions of slope after adjusting for publication bias. The remaining 
11 in lnRR, 19 in SMD, and 17 in Zr had the wrong direction of slope, presumably because of a high degree of heterogeneity that could not be 
controlled for. Original = uncorrected meta‑analytic estimate effect sizes (i.e. βo[overall] in Equation 1). Bias‑corrected = meta‑analytic estimate effect 
size corrected for the presence of two forms of publication bias, small‑study and decline effects (i.e. β0[bias − corrected] in Equation 3)
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Ecological and evolutionary meta-analyses had a rela-
tively low probability of reporting an opposite sign to the 
true direction of both β0[overall] and β0[bias − corrected] (Type 
S = 5%–8%; Fig.  9 and Table S2). The  meta-analyses 
were also able to considerably reduce the overestima-
tion of the true effect size for lnRR (Type M = 1.1 for 
β0[overall] and 1.3 for β0[bias − corrected]; Fig. 10 and Table S3), 
SMD (Type M = 1.9 for β0[overall] and 2.5 for β0[bias − cor-

rected]) and Zr (Type M = 1.1 for β0[overall] and 1.6 for 
β0[bias − corrected]).

Discussion
We have conducted the first comprehensive investi-
gation of the prevalence and severity of two common 
forms of publication bias, small-study and decline 
effects) in the fields of ecology and evolutionary biol-
ogy  using modern analytic techniques. Overall, we 
found strong support for small-study and decline 

effects (time-lag bias) with little heterogeneity across 
studies. The prevalence of such publication bias 
resulted in overestimating meta-analytic mean effect 
size estimates by at least 0.12 standard deviations and 
substantially distorted the ecological and evolution-
ary evidence. The statistical power of ecological and 
evolutionary studies and experiments was found to 
be  consistently low at 15%. Ecological and evolution-
ary studies also showed a 4-fold overestimation of 
effects (Type M error = 4.4) and a low but nontrivial 
rate of misidentifying the sign of the effects (Type 
S error = 8%; error in the direction that leads to the 
opposite conclusion). To place these in perspective 
with the replication crisis [5, 6], we conclude that prior 
published findings in ecology and evolutionary biol-
ogy, at least for the dataset used in this study (87 meta-
analyses, 4250 primary studies, 17,638 effect sizes) are 
likely to have low replicability.

Fig. 8. Ecological and evolutionary studies’ median statistical power to detect ‘true’ effects that were approximated by meta‑analytic mean effect 
size estimates (labels: Meta‑analysis, Sampling) and their bias‑corrected versions (labels: cMeta‑analysis, cSampling). On the y‑axis, effect size metrics 
with different subscripts represent different individual meta‑analyses (see Fig. 2). Sampling = statistical power at sampling level (primary studies). 
cSampling = statistical power at sampling level after correcting for publication bias. Meta‑analysis = statistical power at meta‑analysis level. 
cMeta‑analysis = statistical power at meta‑analysis level after correcting for publication bias. See more details in the legend of Fig. 3. All figures were 
drawn via geom_tile() function in ggplot2 R package (version 2.0) [61]
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The persistent and non‑negligible publication bias 
in ecological and evolutionary meta‑analyses
Small‑study and decline effects are general phenomena
We have found that 17% of ecological and evolution-
ary meta-analyses show evidence for small-study 
effects (i.e. smaller studies reporting larger effect 
sizes). Medical researchers found a similar percentage 
of meta-analyses showing small-study effects (7–18%) 
in a survey of 6873 meta-analyses (the  large sample 
is because medical research has a bigger pool of meta-
analyses to draw from and because that study extracted 
a much narrower scope of data from each meta-anal-
ysis than did our study [7, 63]). Similarly, 13–25% of 
psychological meta-analyses presented evidence for 
small-study effects [64, 65]). These values may seem 
relatively small, but this is in part because, for a given 
meta-analysis, bias detection methods often lack suf-
ficient statistical power to identify a small-study effect 
[45, 63, 66]. Indeed, simulations have shown that the 

power to detect a moderate small-study effect in a 
medical meta-analysis with 10 studies was as low as 
21% [14].

Given the limited power to detect a small-study 
effect [14], it seems reasonable to focus on the sign 
and magnitude of the relationship between effect 
size and sampling error rather than on p-values 
(i.e. null-hypothesis significance testing). By doing 
so, we found that more than 60% of meta-analyses 
had a positive statistically non-significant relation-
ship between the effect size and its sampling error, 
indicating that small studies (i.e. with large sam-
pling error or small precision) tend to report larger 
effects  (note that the likelihood of meta-analysis 
showing this tendency is 50% under the null hypothe-
sis). We confirmed these results by employing a more 
powerful approach, i.e. a second-order meta-analysis 
or meta-meta-analysis, which showed a statisti-
cally significant positive estimate of the relationship 

Fig. 9. Ecological and evolutionary studies’ median Type S error rates (sign error) in detecting ‘true’ effects that were approximated by meta‑analytic 
mean effect size estimates (labels: Meta‑analysis, Sampling) and their bias‑corrected versions (labels: cMeta‑analysis, cSampling). On the y‑axis, 
effect size metrics with different subscripts represent different individual meta‑analyses (see Fig. 2). Sampling = statistical power at sampling level 
(primary studies). See more details in the legend of Figs. 3 and 8. All figures were drawn via geom_tile() function in ggplot2 R package (version 2.0) 
[61]
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between effect size and sampling error. This result is 
in line with recent investigations revealing an nega-
tive mean association of effect size and sample size 
in psychology and psychiatry meta-analyses [51, 67]. 
Moreover, our analysis also showed a small amount 
of heterogeneity among these 87 slopes. This posi-
tive and homogenous effect implies that small-study 
effects are commonplace in ecology and evolutionary 
biology. Similar conclusions were reached in inves-
tigations of economic and psychological meta-anal-
yses: small-study effects are widespread phenomena 
[68–70].

We conclude that decline effects are also wide-
spread in the field. More than 50% of ecological and 
evolutionary meta-analyses showed a negative rela-
tionship between effect size and their year of publica-
tion, indicating that effect sizes decrease over time. As 

mentioned above, the principal reason for failing to 
detect a decline effect in a single meta-analysis lies  in 
the low statistical power of the available detection 
methods [13, 45, 71]. The observed power to deter-
mine a decline effect in the current set of 87 meta-
analyses was low (median = 13%), which is similar to 
that observed in another much larger survey of 464 
ecological meta-analyses (median = 17%; [71, 72]). 
Importantly, our second-order meta-analysis found 
a statistically significant and homogeneous effect 
(Fig.  6A), corroborating that decline effects are com-
mon in both sub-fields previously explored (status sig-
nalling [73], plant and insect biodiversity [20, 74] and 
ocean acidification [75]) and more generally in ecology 
and evolutionary biology [12, 71]. Evidence from other 
disciplines also reveals the pervasiveness of decline 
effects (medical and social sciences [51, 76, 77]).

Fig. 10. Ecological and evolutionary studies’ median Type M error rates (magnitude error) in detecting ‘true’ effects that were approximated by 
meta‑analytic mean effect size estimates (labels: Meta‑analysis, Sampling) and their bias‑corrected versions (labels: cMeta‑analysis, cSampling). On 
the y‑axis, effect size metrics with different subscripts represent different individual meta‑analyses (see Fig. 2). Grey cells indicate that Type M errors 
are greater than 10. See more details in the legend of Figs. 3 and 8. All figures were drawn via geom_tile() function in ggplot2 R package (version 2.0) 
[61]
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The distorted meta‑analytic estimate of effect sizes 
and evidence by publication bias
By combining the observed bias from both small-study 
and decline effects, we found evidence that magnitudes 
of effect sizes might have been overestimated by 0.217, 
0.116 and 0.128 SDs of their original units for lnRR, 
SMD and Zr, respectively. A recent investigation of 
433 psychological meta-analyses also showed a statisti-
cally significant, albeit small, decrease in meta-analytic 
estimates after correcting for publication bias [78]. A 
comparison of meta-analyses that were published with-
out pre-registration versus registered reports (which 
are less prone to publication bias) has also shown that 
unregistered meta-analyses substantially overestimated 
effect sizes although bias-correction methods  like the 
one used in this study can correct for difference in 
results between meta-analyses and registered reports 
[79]. In our dataset, correcting for publication bias led 
to 33 of 50 initially statistically significant meta-ana-
lytic estimates of the mean effect becoming non-signifi-
cant, suggesting unmerited confidence in the outcomes 
of 66% of published ecological and evolutionary meta-
analyses (when using a frequentist approach with a 
p-value of 0.05). Recent psychological investigations 
revealed a similar percentage (60%) of erroneous con-
clusions of meta-analytic evidence because of publica-
tion bias [80].

Low statistical power and high type M error in ecological 
and evolutionary studies
Ecological and evolutionary studies lack power and are prone 
to type M error
Primary studies in ecology and evolutionary biol-
ogy included in our sample of meta-analyses, on 
average, only had a power of 15% to detect the 
biased-corrected effect size identified in the meta-
analysis, which is consistent with earlier findings in 
the sub-fields of global change biology [56, 81] and 
animal behaviour [10, 23]. When excluding studies 
with  effects that are not statistically significant, the 
corresponding average power of primary studies was 
still very low (17%; Table S4). As a result, only stud-
ies with largely exaggerated effect sizes (4-fold) have 
reached statistical significance. Contrastingly, Type S 
error was small but  not trivial (8%); note that mak-
ing an error in direction can result in a completely 
opposite conclusion. A lack of statistical power seems 
to be a general phenomenon in scientific research, 
low power has been identified in many disciplines 
(medical sciences = 20% [82], neuroscience = 21% 
[16], psychological sciences = 36% [27], economics = 
18% [83]). Given this, meta-analysis with appropriate 
bias correction is an important way to generate more 

reliable estimates of effect sizes [30]. Statistically 
speaking, meta-analysis is an effective way to approx-
imate population-level estimates by combining sam-
pling level estimates, despite its shortcomings, some 
of which were shown above. Science is a process of 
evidence accumulation in which primary studies are 
the basis that can be used to produce high-order and 
high-quality evidence (e.g. via systematic review and 
meta-analysis).

Publication bias aggravates the low power and high Type M 
error
Publication bias is expected to reveal lower power and 
higher  Type M error rates because it creates a non-ran-
dom sample of effect size evidence used in meta-analyses. 
We show that correcting for publication bias resulted in a 
decrease in statistical power from 23% to 15%, an increase 
in Type S error rate from 5% to 8%, and an increase Type 
M error rates from 2.7 to 4.4. Psychological and economic 
research also confirm that meta-analyses without bias 
adjustments overestimate the estimate of statistical power 
[27, 28]. The exaggeration of power and effect size is even 
more severe in ecological and evolutionary studies if no bias 
correction is made [5], providing further support for recent 
concerns about the likelihood of low replicability (‘the rep-
lication crisis’) in ecology and evolutionary biology [6, 10].

Limitations
There are four limitations in the present registered 
report. First, when calculating statistical power to 
detect true effects in ecology and evolutionary studies, 
we used the meta-analytic mean effect size (and cor-
responding bias-corrected version) as the true effect 
for each primary study within the same meta-analysis. 
This means that we assumed that the multiple primary 
studies included in the same meta-analysis share a com-
mon true effect. However, the high heterogeneity in 
ecology and evolutionary meta-analyses indicates that 
each primary study may have a specific  true effect size 
that is dependent on the research context (e.g. popula-
tion, species, methodology, lab effects [47]). Therefore, 
using such context-dependent effects as the proxies of 
true effect is probably more reasonable [81]. Second, in 
the post hoc analysis, we used the statistical significance 
(p-value < 0.05) of the meta-analytic mean effect size as 
the threshold to decide whether the true effect in a meta-
analysis is so tiny that can be biologically neglected and 
subsequently excluded to calculate average power. We 
acknowledge that this categorisation is arbitrary because 
the statistical significance does not represent biological 
significance [4]. In some fields, very small effects still 
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have biological importance. Third, the meta-analytic 
effect size estimates after correcting for publication bias 
may still be overestimated  or underestimated because 
the incomplete reporting of important moderators in 
meta-analyses prevented us from accurately correcting 
for publication bias using our regression-based method 
[42, 46]. Fourth, notably, in testing for publication bias 
at both the within- and between-meta-analysis levels, we 
used statistical significance at the 0.05 level as a criteria 
to determine if there was publication bias. We acknowl-
edge that this process, which is commonly referred to as 
a "significance filter", is prone to exaggeration and might 
result in a so-called "winner’s curse" [84–86]. To par-
tially mitigate this issue, the percentage of both statisti-
cally significant and non-significant results was reported 
in Figs. 4, 5 and 6. Furthermore, to avoid drawing con-
clusions based solely on statistically significant results, 
downstream analyses were conducted to assess the 
extent to which publication bias distorted the estimates 
of effect size (as shown in Fig. 7) and the calculation of 
power and Type M/S error rates (as shown in Figs. 8, 9 
and 10).

Implications
How to properly test for publication bias and correct for its 
impacts?
Given the strong and widespread evidence of publication 
bias found in this study (and others), publication bias tests 
should be a standard part of meta-analyses. A recent sur-
vey showed that publication bias tests have become more 
widespread in ecology and evolution in recent years [45]; 
however, inappropriate bias detection methods still domi-
nate the literature [45]. Generally, regression-based methods 
are more powerful than other methods such as correlation-
based methods [14, 63]. The regression-based method in 
the multilevel model framework used in the current study 
can further handle non-independence and high heterogene-
ity, which are common in the field, to bring down the rate of 
false positives [45–47]. Importantly, the method used here 
provides an intuitive quantification of the severity of publi-
cation bias. For example, the pooled β1[small − study] of Zr was 
larger than that of SMD (0.119 vs. 0.091), suggesting publi-
cation bias in Zr is more severe than in SMD. Regression-
based methods to correct for publication bias have been 
shown to produce effect size estimates similar to those 
of registered reports [79]. We strongly recommend that 
meta-analysts employ the regression-based method used 
in the  current paper to routinely test for the presence of 
publication bias, correct for its impact and, report the cor-
rected effect sizes, allowing stakeholders to better judge how 
robust the reported effects are.

How to increase power and mitigate overestimation of effect 
for primary studies and meta‑analyses?
For primary studies, a fundamental solution to increase 
statistical power and mitigate effect size overestimation 
is to increase sample sizes by building up more big-team 
science [87] or global-scale collaborative scientific net-
works such as Nutrient Network [88], US Long-Term 
Ecological Research network [89], and Zostera Experi-
mental Network [90]. Our results confirm that lnRR is a 
more powerful effect size metric than SMD [81]. Power 
of meta-analyses using lnRR was almost twice as large as 
SMD (lnRR vs. SMD: 81% vs. 41%). Moreover, lnRR was 
less prone to exaggeration (lnRR vs. SMD: 1 vs. 2). Prac-
tically, we recommend using lnRR as the main effect size 
when conducting meta-analyses if the biological ques-
tions focused on mean differences (but see [91]),  but 
conduct sensitivity analyses using SMD (see [81, 92] for 
comparisons of the pros and cons of lnRR and SMD).

Conclusions
We indirectly examined the extent of the replication cri-
sis in ecology and evolutionary biology using two inter-
related indicators: publication bias and statistical power. 
Our results indicate that two expected outcomes of pub-
lication bias, small-study effects and decline effects, are 
persistent and non-negligible in the field. Primary stud-
ies in ecology and evolutionary biology are often under-
powered and prone to overestimate the magnitude of the 
effect (i.e. Type M error). Pervasive publication bias leads 
to exaggerated effect sizes, inflated  meta-analytic evi-
dence and overestimated statistical power, and to under-
estimated Type M error rates, undermining the reliability 
of previous findings. Although no single indicator can 
capture the true extent or all relevant evidence of the rep-
lication crisis [93], we have provided clear evidence that, 
as in many other disciplines [1, 2, 4], previously published 
findings in ecology and evolutionary biology are likely to 
have low replicability. The likely replication crisis in these 
fields highlights the importance of (i) designing high-
power primary studies by building up big-team science [7, 
87] where possible, (ii) adopting appropriate publication 
bias detection and correction methods for meta-analyses 
[45], (iii) embracing publication-bias-robust publication 
forms (e.g. Registered Reports — like the current arti-
cle) for both empirical studies and meta-analyses alike. 
More generally, researchers need to adhere more closely 
to open and transparent research practices [94], such as 
(pre-)registration [95], data and code sharing [96, 97], and 
transparent reporting [5], to achieve credible, reliable and 
reproducible ecology and evolutionary biology.
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