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Insects dominate the biosphere and play
a central role in ecosystem processes,
but they are rapidly declining across the
world.

Protected areas (PAs) are designed to in-
sulate biodiversity from human-induced
threats, but they have beenmainly desig-
nated for vertebrates and plants. Most
research on insects in PAs focuses on
the representation of species, and few
Anthropogenic pressures are driving insect declines across the world. Although
protected areas (PAs) play a prominent role in safeguarding many vertebrate
species from human-induced threats, insects are not widely considered when
designing PA systems or building strategies for PA management. We review
the effectiveness of PAs for insect conservation and find substantial taxonomic
and geographic gaps in knowledge. Most research focuses on the representa-
tion of species, and few studies assess threats to insects or the role that effective
PA management can play in insect conservation. We propose a four-step
research agenda to help ensure that insects are central in efforts to expand the
global PA network under the Post-2020 Global Biodiversity Framework.
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Insects in the Anthropocene
Insects comprise >80% of all animal species [1] but are frequently overlooked in conservation
assessments and environmental management activities [2,3]. Recent studies from North
America and Europe have documented dramatic declines in insect diversity and abundance
[4–7] driven by factors including agricultural intensification, climate change, habitat loss and
fragmentation, pollution, invasive species, and insecticide use [6,8–11]. Given the importance
of insects in many ecosystems, halting and reversing these trends is among the most important
tasks of conservation globally [3,6,9,12,13]. However, the extent of the global insect collapse is
still relatively poorly understood [14,15], and insects comprise only 8% of species assessed
against International Union for Conservation of Nature (IUCN) Red List criteria [16].

If the extinction rate of insects is similar to that of birds, at least 44 000 species have disappeared
since 1500, but only 70 insect extinctions are documented [17]. Although this might be an erro-
neous comparison owing to ecological differences between birds and insects, the scale of the
insect extinction crisis is surely profound. Comprehensive regional Red List assessments for par-
ticular insect groups suggest that the outlook is bleak. For example, 11% of European saproxylic
beetles are listed as threatened, 13% are Near Threatened, and 28% are Data Deficient [18]; in
Bangladesh 62% of butterflies are threatened, and a further 11% are Data Deficient [3].

Insects dominate the biosphere where they play a central role in ecosystem processes and func-
tioning [1,15,19]. Most notably, insects pollinate flowers, their herbivory influences the physiology
and population dynamics of plants, they are a major food source for higher trophic levels, and
they transfer more energy from plants to animals than any other plant-eating taxa [1,20,21].
Some 80% of wild plants rely on insects for pollination, and 60% of birds use insects as a food
source [14,15,22,23]. Nevertheless, despite their manifest importance, insects remain neglected
in the conservation literature [3,24], and strategies for their protection and management are
poorly developed in comparison to those for vertebrates [1,24–26].
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As anthropogenic impact accelerates across the planet [15,27], about 60% of terrestrial Earth is
under moderate to intense human pressure [28], and the current rate of species extinctions
exceeds the natural background rate by 1000-fold [29,30]. Following Goal 3 of the current
Post-2020 Global Biodiversity Framework draft, area-based conservation measures and
ecosystem-based approaches ('nature-based solutions') are seen as crucial to halt the collapse
of biodiversity [31]. PAs (see Glossary) and other conserved areas are, and will continue to be, a
significant global tool to conserve threatened and endemic species [32]. In recent decades,
thousands of new PAs have been established to harbor plants and animals [33]. However,
what is the role of PAs in conserving insects?

Assessments of PA performance focus almost exclusively on coverage of vertebrate distribu-
tions, vegetation communities, or ecosystems, perhaps because these aspects of biodiversity
are most readily mapped [33]. There has been little assessment of how well PAs conserve
insects. Worryingly, insect declines have been documented within some PAs, including those
in the UK, Germany, The Netherlands, Sweden, Costa Rica, and Puerto Rico [15,34]. For exam-
ple, flying insect biomass has declined more than 75% in some PAs in Germany [35]. Although
the trends for insect decline are often weaker in protected than unprotected areas [5], it is
unknown whether systemic declines inside PAs are occurring globally [36], and whether PAs are
being adequately managed for insect conservation. Given the crucial role of insects in ecosystem
processes, managing them within PAs could be vital to ensure the ecological functioning and
resilience of PAs themselves [37].

Here we (i) review the effectiveness of PAs for insect conservation; (ii) explore the geographic,
taxonomic, and thematic scope of studies of insects in PAs; (iii) compile a list of threats to
insects in PAs; and (iv) outline a research and policy agenda to promote insect conservation
within PAs.

Protected areas and insect conservation
There are relatively few studies exploring insect representation in PAs, especially when compared
to the literature on other taxa [33,38,39]. However, those that do paint a bleak picture, revealing,
for example, that three in four insect species are inadequately represented within PAs globally
[40], 25% of endemic Orthoptera are absent from Natura 2000 sites in Greece [41], 40% of
insects are unprotected by biosphere reserves in Costa Rica, USA, and Mexico [42], and PAs
in Bangladesh cover <2% of the geographic range of its butterflies [3].

By contrast, some studies have reported relatively high levels of coverage of insect distributions
by PA networks. For example, the distributions of 76% of rare and threatened Odonata overlap
PAs in the Mediterranean [43], and >80% of freshwater insects in Spain occur within PAs [44].
Compared to unprotected areas, butterfly species richness in Germany was highest inside
PAs, and consistently declined with increasing distance from PAs [34]. Butterflies and some
other invertebrates undergoing climate-driven range expansion disproportionately colonize PAs
in the UK [45].

Although insects have sometimes featured prominently in the designation of PAs [46], such
examples are rare in the published literature. Dragonflies have a cultural significance in Japan,
and about 24 PAs are being established specifically to conserve them. The Okegaya-numa
conservation area contains some of the rarest dragonflies in the world, including bekko tombo
(Libellula Angelina). In Great Britain, several PAs have been established for insects, principally
to promote interest in Odonata and Lepidoptera [46,47]. Elevating the profile of insects through
PA designation could help to raise public awareness about the plight of insects.
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Glossary
Protected areas: a clearly defined
geographical space, that is recognized,
dedicated, and managed through legal
or other effective means, to achieve the
long term conservation of nature [101].
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Despite these examples of PAs playing an effective role in insect conservation, of the 44 studies
comparing insect richness or abundance inside and outside PAs, only four reported higher spe-
cies richness within PAs. Conversely, eight studies found higher species richness or abundance
outside PAs. Although comparing species richness inside and outside PAs provides little direct
information about the effectiveness of PAs in conserving insects, the poor results suggest that
placement of existing PAs has not considered the present distribution of insects. Enhancing
the inclusion of hotspots of insect species richness and abundance within PAs seems to be a
high priority [33,48], and PAs might also enhance insect protection by, for example, better repre-
senting areas of topographic and hydrological complexity, facilitating migrations, and serving as
corridors to connect suitable habitats.

The designation of PAs generally reduces broadscale threats to ecosystems, such as habitat
clearance [49], implying that insects threatened by these threats will also benefit. For example,
larger, more connected, and well-managed PAs could reduce species sensitivity to climate change
and could also facilitate faster recovery from perturbations [50,51]. However, where other types of
threats harm insects, such as a decline in a specific host plant or the presence of a non-native
parasite or predator, then specific interventions beyond PA designation alone will be needed
[8,36,52]. We found little evidence of widespread PAmanagement with insects in mind (Figure 1C).

Studies of insects in protected areas
We searched for studies of insects in PAs, and located 1590 studies from 127 countries (detailed
methods are given in the supplemental information online). There was a clear geographic bias,
TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 1. The (A) geographic, (B) taxonomic, and (C) thematic distribution of 659 studies of insects in protected
areas (PAs) retrieved in a systematic literature search. Methods are presented in the supplemental information online
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and 18 countries had >20 studies and 38 countries only one study, and no studies were found for
70 countries (Figure 1A). Although there were few studies from the Afrotropics, there was
better representation from tropical South-East Asia. South America, except for Brazil, was also
poorly represented. These studies spanned 24 of the 29 insect orders (Figure 1B). Eleven orders
were considered by <10 studies, there was only one study each on Notoptera and Mecoptera,
and five orders were not the subject of any study.

Most studies (67%) investigated the distributions of species, most commonly documenting, or
assessing the presence of a species in a PA. By contrast, 9% of studies focused on threats, 5%
on conservation strategies, and only 3% on the efficacy of the PA for insect conservation
(Figure 1C and see Table S2 in the supplemental information online for definitions of study
types). These numbers suggest that studies on insects in PAs remain focused on collecting
information on the distribution of species, and relatively little is known about threats to insects
that might arise in PAs, and how these contrast with those in adjacent unprotected areas.

Threats to insects within protected areas
Threats to insects have been shown to permeate PA boundaries. Flying insect biomass declined
<75% in some PAs in Germany, and 61 of the 62 studied PAs were adjacent to agricultural fields
[35]. Habitat loss and fragmentation due to agriculture, development, and urbanization threaten
insects in PAs [53], and climatic variability such as drought appears to be driving the decline of
tropical insects, a threat that PAs cannot abate [54]. The exploitation of aquifers for cities and
agriculture is a major threat to insects in arid lands, where rivers and other waters are being
overexploited at alarming rates, and in extreme cases are drying up altogether [15,53]. In
Australia, major bushfires in 2019–2020 reduced the distributions of native bee species
so severely that 29 species might be eligible for listing as globally threatened (endangered and
vulnerable) [55].

Insects face 12 major types of threat inside PAs (Table 1 and Figure 2), of which natural system
modifications (a range of activities that alter or deteriorate habitats, mostly due to anthropogenic
activities such as habitat fragmentation and loss), development, and climate change have been
the most widely discussed (Figure 2A). Threats to insects in PAs were identified in 94 countries,
and natural system modifications were reported in 39 countries and were the most extensively
studied threat in PAs in all the continents (Figure 2A). Eleven threats were identified as potentially
affecting Hymenoptera, and nine as potentially affecting Lepidoptera. By contrast, only one threat
has been studied for Hemiptera, Neuroptera, Notoptera, and Trichoptera (Figure 2B). Of course,
there is unlikely to be a close correspondence between the rate at which threats are identified in
the literature and their true prevalence or impact.

Insects are apparently facing similar threats to many other taxa – habitat loss and degradation
through deforestation, climate change, resource exploitation, invasive species, pollution, and
environmental contamination – even within PAs (Table 1 and Figure 2). There are, however,
some threats that appear to disproportionately affect insects, most notably light pollution and
agricultural intensification both inside and outside PAs [15,56,57]. Inside PAs, natural system
modifications are the most widely studied threat, consistent with the pressure this threat exerts
globally on insect diversity and abundance [15]. For example, the critically endangered Epirus
dancing grasshopper (Chorthippus lacustris) occurs within Natura 2000 sites but has strongly
declined, possibly because of the construction of houses and land conversion even within PAs
[41]. The last German subpopulation of the steppe bush-cricket (Montana montana), which is
listed as endangered in the EU, became extinct within a nature reserve owing to inappropriate
management [41]. In Australia, breeding sites of Illidge's ant-blue butterfly (Acrodipsas illidgei)
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Table 1. Threats insects are facing inside PAs, with illustrative examples

Threat Example Refs

Agriculture and
aquaculture

High-density beekeeping depressed the occurrence (−55%) and nectar
foraging success (−50%) of local wild bees in PAs in Côte Bleue, France

[60]

Biological resource use The annual rate of forest degradation in the Monarch Butterfly Biosphere
Reserve in Mexico from 1971 to 1984 was 1.70%, rising to 2.41% over the
next 15 years

[61]

Climate change and
extreme weather

By 2080, Brazilian Atlantic Forests are predicted to become climatically
unsuitable, decreasing the distributions of species inside PAs. Around 4% of
species in the Brazilian Atlantic Forest might become extinct, of which some
are endemic

[62]

Energy production and
mining

The milkweed (Asclepias sp.) habitat in the Monarch Butterfly Biosphere
Reserve in Mexico has been lost due to increasing demand for biofuels

[63]

Geological events The PAs where the hoverfly (Aneriophora aureorufa) occurs are threatened
by active vulcanism in Puyehue National Park, Chile

[64]

Human inclusions and
disturbance

Dung beetles declined in richness and abundance owing to human
disturbance in Los Tuxtlas Biosphere Reserve, Mexico

[65]

Invasion, disease, and
problematic species

In some PAs in Israel, honey bee introduction has resulted in a decreased
frequency of floral visitation by native bees

[66]

Natural system
modifications

Intensification of PA management has heavily reduced the diversity of
saproxylic insects in Europe

[67]

Pollution Lakes in Keibul Lamjao National Park in India contain high levels of heavy
metals that reduce freshwater insect diversity

[68]

Residential and
commercial developments

Insect mortality significantly increased during the peak hiking period in some
PAs in southern Poland

[69]

Transportation and service
corridors

In some Romanian PAs, weevils were killed in high numbers by cars in the
spring. Some of the road-killed species were first recorded from this region,
and others are rare in Romania

[70]
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are threatened by coastal development inside PAs [58,59]. Insect biomass has declined by >75%
in German PAs, paralleled by a loss of 20% in species richness and 80% in total abundance over
25 years [35]. The literature suggests that many threats will not be abated by a strategy that
simply focuses on the acquisition of land, and that wider management techniques must be
applied to overcome these threats, both inside and outside formal PAs [49].

Prospects for insect conservation in protected areas
For many species, PAs have become a last refuge from proliferating human-induced threats [71],
but it remains unclear whether the major changes effected by PA designation, such as a slowing
of habitat clearance or a reduction in overharvesting of vertebrates, deliver comprehensive threat
abatement for insects. Even if inadequately resourced for threat management, PAs can still
substantially lower threat intensity. For example, an Australian study [49] concluded that designating
PAs without implementing specific management would attenuate one or more threats for 76% of
threatened species and all identified threats for 3% of species [49]. This is because the designation
of PAs in Australia generally at least halts major habitat destruction. However, in the presence of
explicit threat-management approaches, the same set of PAs would remove one or more threats
for 100% of species and all identified threats to 48% of species, highlighting the enormous increase
in PA effectiveness when they are managed [49,72]. Further research on PAmanagement that best
abates threats to insects now seems to be urgent, as is creating conservation approaches that
span both PA designation and broader landscape management beyond PA boundaries.

There are key differences in the management responses that are likely to benefit insects com-
pared to other taxa, but only a fraction of existing PAs are explicitly managed for insect diversity.
Trends in Ecology & Evolution, January 2023, Vol. 38, No. 1 89

CellPress logo


TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 2. The number of published studies mentioning threats to insects within protected areas (PAs). (A)
Prevalence of threats by continent. (B) Prevalence of threats among insect orders. Threats were categorized threats using
the Threats Classification Scheme of the International Union for Conservation of Nature (IUCN) [16].
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For example, the strategy of reducing hunting pressure is amajor benefit of PAs formanymammals
in sub-Saharan Africa [73,74]. By contrast, direct exploitation of insects is rare (with some excep-
tions, e.g., harvesting of larvae of the moth Gonimbrasia belina). Instead, insects are often depen-
dent on specific host plants, and even apparently minor changes in plant community composition
can make large areas uninhabitable for some insect species [25,52]. Likewise, the aggressive burn
cycles recommended by restoration ecologists for grassland are often too short for many insects
[75]. Ecosystem changes that negatively impact on insects can readily occur when management
is focused on other priorities, for example maintaining open grassland areas in an African game
reserve to allow visitors to view game, or removing grazing from a newly designated PA. However,
examples are emerging of successful insect conservation both inside and outside PAs, and we
synthesize these into a set of approaches that could be applied more broadly (Figure 3).

Step 1. Integrate insects into management plans
A first priority is to integrate insect conservation into the management plans for existing PAs
(Figure 3). Individual insect species are often host-specific and require access to one or more
particular plant species to complete their life cycle [76,77]. Increasing the availability of floral
resources and host plants can be among the most efficient ways to promote insect diversity
in PAs [78,79]. The presence of many insects also depends on the availability of waterbodies,
vegetation mosaics, and high-quality habitats; PA management plans could focus on increasing
the presence and diversity of such resources when planning for insect conservation [78]. For
example, ~56% of all forest beetles are associated with both standing and fallen dead wood
90 Trends in Ecology & Evolution, January 2023, Vol. 38, No. 1
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Figure 3. Four actions to enhance the future of insect conservation. Abbreviation: PA, protected area.
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in Central Europe; hence, providing or not removing dead wood can support more diverse
communities of beetles and other insect groups, as well as many ground-dwelling vertebrates [80].

Conflict between the management of insects and other groups in PAs occasionally arises. For
example, several invasive plant species (e.g., Lantana spp.) support many adult insects with
generalist feeding habits [81]. Insect richness can be positively associated with the presence
of invasive plants such as Himalayan balsam (Impatiens glandulifera) and Japanese aralia
(Fatsia japonica) [82]. Conservation management plans that involve the elimination of invasive
plants might therefore consider how best to replace the removed floral resources used by insects
[79]. Restoration of floral resources can have positive impacts on plant–pollinator interaction
networks and reverse ecosystem degradation caused by invasion [82–84]. Likewise, considering
the impacts on insects of common PAmanagement practices such as controlled burning, control-
ling illegal activities by enforcing laws and strengthening policies, maintaining and safeguarding
high-quality habitats, controlling disease spread, sustainable land-use, safeguarding native
species plant diversity, and regular assessments of habitats can be effective in helping to
conserve insects inside PAs [25,79,82,84,85]. However, it is important to note that different
Trends in Ecology & Evolution, January 2023, Vol. 38, No. 1 91
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Outstanding questions
In what circumstances are PAs an
effective conservation tool for insects,
and what should conservationists do
when they are not?

How do we increase the PA coverage
efficiently to cover more of the geo-
graphic ranges of insects?

Where should new PAs and other site-
based conservation strategies be
immediately established to mitigate
insect declines and meet the Post-
2020 Global Biodiversity Framework?

Should PAs be managed differently to
achieve effective insect conservation?

How can whole-of-landscape conser-
vation interact with PA designation to
safeguard insect populations?
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management interventions might be needed for different taxa and across different stages of
their life cycles.

Step 2. Strategically designate new PAs for insects
Careful planning can ensure that new PAs better represent insects (Figure 3), especially those
most likely to benefit from PA designation as opposed to broader landscape-level management
interventions [49] (Figure 3). For example, PA planning could focus on insect species that are at
risk from threats readily abated by PA designation, such as habitat clearance, rather than on
species threatened by issues that require broader management, such as climate change mitiga-
tion. Of particular importance for insects is to ensure that any metapopulation structure is
accounted for in the spatial configuration of the PA system [42].

Step 3. Design wider insect conservation initiatives beyond the PA boundary
Preserving mountainous topography with its elevational and hydrological diversity, as well as
conserving forest openings, buffer zones, and small green spaces, has been shown to be
effective in conserving diverse insect groups [86,87]. In some cases, effective insect conservation
can be achieved outside the formal PA network. For example, Chowdhury et al. [88] showed that
themodest number of small urban green spaces in Dhaka, Bangladesh, contained about half of the
country's butterfly species, of which 40% were nationally threatened. Managing such urban green
spaces with insects in mind could contribute greatly to regional insect biodiversity [89].

Many studies have documented the negative impact of agricultural intensification on insects;
however, small-scale traditional farming and organic farming can benefit insect diversity, suggest-
ing a role for multi-use landscapes in insect conservation. For example, the presence of wild
grazers increased the alpha- and beta-diversity of all insect taxa compared to domestic grazing
in South African PAs [90]; species richness increased by 70% with the inclusion of traditional
farming methods adjacent to PAs in Belize [91]. However, traditional small-scale farming is unlikely
to provide food for ~8 billion people. Future studies should assess the impact of intensive
agriculture on insect diversity and abundance on a global scale, focusing especially on how
different pesticides (e.g., neonicotinoids) affect insects (including non-target species) and
how conservation management is seeking to minimize their diffusion into wildlands [92–94].
Ideally, agriculture needs to make better use of urban and ex-urban landscapes in freeing up
land for PAs [53,88].

Step 4. Invest in insect monitoring and research
The global conservation effort has so far been slow to incorporate insect taxa into PA designation
and management, mostly owing to inadequate knowledge of their distribution [5,20,24,95].
Targeted field surveys, biodiversity assessments, and long-term systematic surveys could im-
prove this situation (Figure 3). Although conducting such assessments on a global scale is highly
ambitious, citizen science could greatly expand the scope of monitoring [96]. Citizen science plat-
forms such as iNaturalist (https://www.inaturalist.org/) can widen the geographic and taxonomic
coverage of biodiversity occurrence datasets and rapidly improve the delimitation of species dis-
tributions to inform PA prioritization analyses [19,95,97,98] (Figure 3). Similarly, IUCN Red List as-
sessments at regular intervals can help to track successes and to guide the formulation of priority
conservation actions. Identifying insects in the field is complex, labor-intensive, and inefficient, but
advances in computer vision and deep learning aremaking progress in solving this challenge [99].

Concluding remarks
PAs may be the last refuge for many species globally [25]. However, most PAs have been estab-
lished to protect landscapes, vascular plants, or large vertebrates [33]. To conserve insects inside
92 Trends in Ecology & Evolution, January 2023, Vol. 38, No. 1
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PAs, we argue that four major steps need to be taken: (i) integrate insects into management plans
for existing PAs, (ii) strategically designate new PAs for insects by including insect specific habi-
tats that would benefit from management, (iii) design wider insect conservation initiatives beyond
PAs by considering both threatened and widespread species, and (iv) invest in insect monitoring
programs. Given the future that biodiversity faces, it is essential to raise public awareness of the
need for insect conservation (see Outstanding questions). In addition, researchers working on
area-based conservation efforts might need to extend their purview beyond the easily employed
vertebrate datasets and examples. We hope that this review stimulates greater scrutiny and
assessment of the value of PAs and other conserved areas for safeguarding insects, especially
at a time when the international community is striving for bold conservation commitments
[100]. We need detailed investigation of the role of other effective area-based conservation mea-
sures for insects outside formal PAs. There is an urgent need to plan more systematically for
insect conservation to take advantage of the current wider momentum to conserve biodiversity.
Given the push for an expansion of PA coverage to 30% of the terrestrial surface by 2030, we
urge the explicit inclusion of insects into spatial planning analysis, and that PA managers explicitly
consider insect conservation.
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