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In a rapidly changing environment, does sexual selection on males elevate a

population’s reproductive output? If so, does phenotypic plasticity enhance

or diminish any such effect? We outline two routes by which sexual selection

can influence the reproductive output of a population: a genetic correlation

between male sexual competitiveness and female lifetime reproductive suc-

cess; and direct effects of males on females’ breeding success. We then

discuss how phenotypic plasticity of sexually selected male traits and/or

female responses (e.g. plasticity in mate choice), as the environment changes,

might influence how sexual selection affects a population’s reproductive

output. Two key points emerge. First, condition-dependent expression of

male sexual traits makes it likely that sexual selection increases female fitness

if reproductively successful males disproportionately transfer genes that are

under natural selection in both sexes, such as genes for foraging efficiency.

Condition-dependence is a form of phenotypic plasticity if some of the vari-

ation in net resource acquisition and assimilation is attributable to the

environment rather than solely genetic in origin. Second, the optimal allo-

cation of resources into different condition-dependent traits depends on

their marginal fitness gains. As male condition improves, this can therefore

increase or, though rarely highlighted, actually decrease the expression of

sexually selected traits. It is therefore crucial to understand how condition

determines male allocation of resources to different sexually selected traits

that vary in their immediate effects on female reproductive output (e.g.

ornaments versus coercive behaviour). In addition, changes in the distri-

bution of condition among males as the environment shifts could reduce

phenotypic variance in certain male traits, thereby reducing the strength

of sexual selection imposed by females. Studies of adaptive evolution

under rapid environmental change should consider the possibility that phe-

notypic plasticity of sexually selected male traits, even if it elevates male

fitness, could have a negative effect on female reproductive output, thereby

increasing the risk of population extinction.

This article is part of the theme issue ‘The role of plasticity in phenotypic

adaptation to rapid environmental change’.
1. Introduction
Sexual selection favours traits that are often exclusively expressed or only exag-

gerated in males, such as weapons and ornaments, which increase mating or

fertilization success when there is competition for mates or fertilization oppor-

tunities. In contrast, natural selection favours economically efficient traits that

are usually similarly expressed in both sexes, which improve foraging ability,

predator evasion, disease resistance and so on. In general, therefore, natural

and sexual selection are in opposition. There is a trade-off between a longer

life or a faster mating rate (but see [1,2]). It might therefore seem slightly para-

doxical that researchers have asked whether sexual selection on males can

increase the rate at which females adapt to a novel environment [3–7]. This

is akin to asking if sexual selection on males elevates the mean absolute lifetime
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reproductive output of females (i.e. population mean fitness

(definition modified from [8]; see also [9])), thereby increas-

ing the maximum population growth rate and decreasing

the likelihood of population extinction. In a similar vein,

researchers studying phenotypic plasticity, especially those

motivated by conservation concerns arising from climate

change, industrial-scale agriculture and urbanization, have

asked whether plastic responses to rapid environmental

change reduce the likelihood of population extinction (‘plastic

rescue’ sensu [8]) because phenotypic plasticity increases

population mean fitness [10].

Surprisingly, these two research questions are rarely com-

bined. Researchers studying plastic rescue mostly ask

whether plastic responses of naturally selected traits to a

changing environment are broadly adaptive (i.e. elevate

male and female absolute fitness). It is rare for them to

instead ask whether adaptive plasticity of sexually selected

traits in males (i.e. those that increase relative mating or ferti-

lization success) will increase the mean absolute lifetime

reproductive output of females. Before proceeding further,

we should acknowledge that mean female lifetime reproduc-

tive success (LRS) is an imperfect proxy for the realized

growth of a population and its effective population size

(the two key demographic parameters that influence extinc-

tion risk (review: [11]; see also [12])). We are essentially

assuming there is ‘hard’ rather than ‘soft’ selection on

female LRS (see [13]) such that absolute differences in

female LRS between a population with and without sexual

selection translate into differential recruitment rates. This

is a simplification, but one that is widely used when

investigating so-called ‘population fitness’ (e.g. [8]).

Many factors select for different levels of expression of

sexually selected traits by males (review: [14]). For example,

the sonic and light environment affect the transmission of

acoustic and visual courtship signals respectively (review:

[15]); and the local predator and parasite community deter-

mine the costs of investing in attractive traits that increase

a male’s vulnerability to predators, or capacity to tolerate

parasites. The benefits of investing in sexually rather than

naturally selected traits also depend on the strength of

sexual selection, which can covary with the operational sex

ratio, density of competitors and mate encounter rate [16–18].

Perhaps the most important and widespread form of phenotypic

plasticity in sexually selected traits relates to the availability

of resources. Many sexually selected traits show ‘condition-

dependent’ expression, being smaller when food is limited. All

of these factors should select for males that detect appropriate

environmental cues and show an adaptive plastic response

in their investment into sexually selected traits.

In this review, we explore how plastic responses by males

to a changing/novel environment could influence the mean

absolute LRS of females, and hence the likelihood of popu-

lation extinction. We focus on plasticity in males rather

than females because theory suggests that sexual selection

mainly acts on males [19–21]. This claim is widely supported

empirically by greater male weaponry and ornamentation

[22–25], and by a stronger relationship in males than females

between mating and reproductive success ([26]; but see

[27,28]) (for examples of sexual selection in females see

[29,30]).

Terminology: We define phenotypic plasticity as a genotype

producing different phenotypes depending on the environ-

ment in which it is expressed. This is broadly synonymous
with individuals (whose genotype is constant) showing a

plastic response. The response is adaptive if it increases fitness

compared with continued expression of the phenotype pro-

duced prior to the environmental change of interest. When

referring to the degree of plasticity expressed by a genotype

we refer to its reaction norm (the function relating the

expression of the focal trait to an environmental parameter).

Selection for an adaptive plastic response is synonymous

with selection for an appropriately shaped reaction norm.

Evolution of plasticity can only occur if there is additive gen-

etic variation in reaction norms (i.e. gene-by-environment

(G � E) effects). We should note that individual plasticity is

not strictly synonymous with G � E, despite individuals

having different genotypes, because individuals might vary

phenotypically across focal environments for purely non-

genetic reasons (e.g. a good start in life might increase their

ability to adjust their phenotype (permanent environment

effects: see [31])).
2. How can sexual selection affect female
reproductive output?

Regardless of whether or not phenotypic plasticity in sexually

selected traits is adaptive for males, it seems unlikely on the

face of it to affect the likelihood of population extinction in a

rapidly changing environment. This is because the expression

of sexually selected traits simply determines which males

mate. Does this have any bearing on how many females there
are, how often they breed, and the success of each breeding attempt?
Sexual selection on males will only influence population

extinction if it affects these three key demographic par-

ameters. We therefore first address the role of sexual

selection in determining female LRS before we consider

additional compounding effects of male plasticity. Naively

we might assume that males cannot affect mean female

LRS because females are rarely limited in their ability to

acquire a mate, but this conclusion would be wrong [32].

Males can affect mean female LRS for three main reasons.

(a) There is a positive genetic correlation because successful

males transfer genes that elevate their daughters’ LRS

(rG) [33,34]. This is most likely to occur when there is addi-

tive genetic variation for naturally selected genes that

determine condition, and male sexual traits are con-

dition-dependent (see §4). Conversely, there could be a

negative correlation if successful males transfer sexually

antagonistic genes that elevate their sons’ mating suc-

cess but lower their daughters’ LRS [35,36]. A negative

inter-sex genetic correlation (rMF) for fitness has been docu-

mented in several species [37–41], but this is not strictly

equivalent to a negative genetic correlation between male

sexual competitiveness and female LRS. For example,

even in the absence of sexual selection, a negative rMF

could arise if natural selection favours different genotypes

in each sex, which is likely given sex-specific life histories

(e.g. [42–44]). Strictly speaking it is necessary to measure

the genetic correlation (rG) between male and female fit-

ness that is attributable to sexual and natural selection

respectively. This correlation is likely to vary predictably

depending on the environment in which it is measured

[45,46] (see §5). It should also be noted that a positive rG

is not equivalent to female choice for genetic quality
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(‘good genes’), as this refers to a sire’s effect on mean

offspring fitness (i.e. daughters and sons) [47–49].

(b) There is a phenotypic correlation (rP), between a male’s

mating success and his mate’s LRS because male sexual

competitiveness covaries with: (i) traits that determine the

level of sexual conflict over mating and sperm use (e.g.

seminal toxins, traumatic damage to females) [50–52]; (ii)

the likelihood he passes on sexually transmitted infections

[53,54]; (iii) the quantity and/or quality of resources trans-

ferred (e.g. parental care, nuptial gifts) that improve a

female’s ability to rear viable offspring [55–57]; and, (iv)

his daughters’ LRS due to his rate of ‘offspring provision-

ing’ (e.g. food intake when young, or access to breeding

resources as an adult) (e.g. [58,59]). When calculating

the contribution of successful males to a population’s

reproductive output we need to determine how many

daughters they sire compared with the average male, and

if their daughters are of above average fecundity [60]. In

general, however, there is only weak empirical evidence

that sire attractiveness affects the offspring sex ratio [61].

(c) Even if we ignore the issues of which males mate, male–

male competition leads to the coevolution of sexually

selected male traits and corresponding female traits (e.g.

mate choice, mating resistance) that generally reduce

female LRS below the level that would occur in their

absence [62]. First, investment into sexual traits lowers

males’ parental investment, reducing the mean output per

breeding event [21]. Second, intense sperm competition

can cause sperm depletion, which lowers fertilization suc-

cess, reducing the output per breeding event. This is most

common when only a subset of males acquire mates

[63,64]. Third, sexual conflict that arises when females evade

and resist males tends to increase the interval between

breeding events, and lowers female fecundity owing to

energetic costs, lost foraging time and allocation of

resources to defensive traits instead of offspring [65–67].

Sexual conflict can also kill females, reducing the number

of breeding females in a population [68,69].

3. The net effect of sexual selection on mean
female reproductive output

For all of the scenarios covered in §2(a,b) there are both theor-

etical models and empirical data suggesting that mating with

more successful (i.e. competitive) males can have either a

positive or negative effect on mean female LRS, depending

on contingent factors. For example, the proportion of genes

with sexually antagonistic effects tends to be lower when

populations are in a novel or changing environment (e.g.

[70–72]) (§5). Consequently, there is no consensus as to

how variation in male mating success due to sexual selection

affects the likelihood of population extinction. In contrast, all

of the sexually selected processes in §2(c) reduce mean female

LRS. The net effect of sexual selection on mean female

LRS, hence population extinction risk, is therefore uncertain

[3–7], although it seems on balance to be beneficial.

First, sexual selection is positively correlated with lineage

diversification (speciation minus extinction rates) across

many taxa ([73,74]; but see [75,76]). If this relationship is

partly driven by lower extinction rates, it is plausible that

sexual selection has a beneficial effect on mean female LRS.

Second, a recent study of ostracods found that persistence
in the fossil record (i.e. time to extinction) was shorter for

species assumed to have more intense sexual selection on

males [77]. Third, numerous experimental evolution studies

have created breeding lines in which sexual selection is

either present (females have access to many males) or

absent (enforced monogamy). The two types of lines often

evolve differences in female fecundity, lifespan, offspring via-

bility and other traits (review: [78]). Sexual selection clearly

elevates components of female LRS in some studies (e.g.

[79–81]) but not others (e.g. [82–84]). Intriguingly, a few

studies have directly shown that sexual selection lowers the

rate of line extinction [85–88].
4. Environmental drivers of plasticity in sexually
selected male traits

In §2 we noted that sexually selected male traits can vary in

the costs they impose on female LRS (e.g. ornaments versus

seminal toxins). A key challenge in understanding how plas-

ticity affects population extinction risk is therefore to predict

how males plastically allocate resources into different sexu-

ally selected traits as the environment changes. We defer

discussion of this topic to §6. In this section, we simply intro-

duce three key factors that induce plasticity in sexually

selected traits: environment-dependent resource availability,

the social environment and the signalling environment. We

emphasize the benefits to males of these plastic responses

with the implicit understanding that whether they are adap-

tive or not also depends on the costs of developmental/

cognitive mechanisms that allow for plasticity, the capacity

to detect environmental cues, and the likelihood of misinter-

preting these cues [89–92]. See [10] for a more complete

discussion of the costs of plasticity in the context of

adaptation to novel environments.

(a) Condition-dependence traits: a plastic response to
resource availability

‘Condition’ is defined as the acquired resources that an indi-

vidual can strategically allocate to life-history traits [93].

Condition is a simple concept invoked in numerous sexual

selection models [49,94,95], but it is notoriously difficult to

measure [96,97]. Nonetheless, it is often stated that most

sexually selected traits are strongly condition-dependent

[98–100]. This claim is based on trait expression positively

covarying with environmental variation in resource avail-

ability, and this covariation being stronger for sexually than

naturally selected traits [97,101] (e.g. a greater change in sexu-

ally than naturally selected traits when diet is manipulated).

It remains unclear to us whether other key life-history traits

(e.g. immunocompetence, female fecundity) are, in fact, less

condition-dependent than sexually selected male traits

(reviewed by [98]; but see [99,102]). Nonetheless, phenotypic

plasticity in sexually selected traits attributable to environ-

mental variation in resource availability is often high. This

is consistent with a zero-sum game in which success at com-

peting for mates and eggs is largely determined by a male’s

relative investment in attractiveness, fighting ability and

sperm competitiveness [103,104].

Variation in condition among individuals arises owing to

contingent external factors (e.g. season of birth, which affects

resource availability in the environment) and direct effects of
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many naturally selected traits that determine the ability to

acquire or assimilate resources (e.g. foraging ability, immune

function). Strictly speaking we cannot treat condition-

dependence as synonymous with phenotypic plasticity.

Why? Plasticity involves a change in trait expression for a

given genotype due to the environment. In contrast, con-

dition-dependence could reflect differences in the resources

that can be allocated to a trait that arise solely from genetic

differences among individuals rather than environmental

factors. However, we think it is biologically sensible to

assume that phenotypic variation in condition-dependence

traits arises owing to both genetic and environmental vari-

ation. In addition, we assume that condition-dependence

is almost always associated with G � E interactions (hence

additive genetic variation in reaction norms) when consi-

dering large environmental changes, because when the

environment changes in unexpected directions it seems likely

that only some of the existing standing genetic variation will

yield phenotypes that improve an individual’s fit to the

environment and thereby increase condition.

Crucially, variation in condition among males is

‘revealed’ in condition-dependent, sexually selected traits.

So male mating success is potentially correlated with additive

genetic variation for naturally selected traits that benefit

females, thereby making rG positive if condition-enhancing

genes elevate both male mating success and female LRS.

Phrased slightly differently, condition-dependent traits pro-

vide a mechanism whereby sexual selection can eliminate

deleterious alleles from a population, regardless of whether

they arise owing to mutations, gene flow between locally

adapted populations [13,105,106], or mismatch due to

environmental change ([5,107]; but see [108]). The existence

of condition-dependent, sexually selected male traits might

therefore seem likely to elevate mean female LRS because

of the genetic benefits to females of mating with males

in good condition. Unfortunately, this conclusion is prema-

ture because many condition-dependent traits also damage

females as a by-product of conferring an advantage to

males when there is sexual conflict over mating (e.g. [109]).

This makes it crucial to know how males allocate resources

to different condition-dependent traits as resource avail-

ability changes owing to the environment (see §6).

(b) The social environment: the response to cues of
sexual competition

Males could benefit from plastic responses of sexually

selected traits to the number of competitors, the sex ratio,

and other social factors that affect the compound probability

of obtaining a mate and their sperm achieving fertilization.

The most common plastic responses are shifts in sperm pro-

duction, ejaculate size, and rates of courtship or aggression

[63,110–114]. Studies that examine plastic responses to the

social environment by males rarely quantify the effect on

female reproductive output ([115,116]; but see [117]). Instead,

researchers usually extrapolate from effects of male traits on

females in other studies to predict how male plasticity will

alter female LRS. For example, male Drosophila that perceive

higher rates of sperm competition mate for longer and stimu-

late higher rates of egg laying [118]. All else being equal, this

implies that male plasticity might elevate female LRS, but this

is obviously contingent on the mortality costs to females of a

male-induced increase in productivity (e.g. [119]). In other
studies, male plasticity seems likely to reduce female LRS.

For example, dominant males in domestic fowl mate more

often and produce more sperm than subordinates but,

unlike subordinates, ejaculate quality decreases over succes-

sive copulations [120]. Greater investment into sperm in a

more competitive social environment could therefore lower

female LRS if it reduces egg fertilization rates.

Our understanding of how plastic response of males to

social cues affect female LRS is limited. In some cases, we

can use theory to reliably predict plastic responses in specific

male traits (e.g. strategic ejaculation [113]). In other cases,

the plastic response is not in the predicted direction. For

example, there were no consistent effects of perceived

future mating opportunities on investment into either pre

or post-copulatory sexual traits by guppies [121]; nor did

male mice adjust their ejaculates to the number of potential

mating opportunities, although they did so in response to

the perceived risk of sperm competition [122]. These

anomalies might arise because the marginal benefits of allo-

cating resources to different sexually selected traits depend

on the level of mating and fertilization competition [114].

Again, this means it is crucial to be able to predict how

males allocate resources to different traits if we want to

relate male plasticity to female LRS (§6).

(c) The signalling environment
There is good evidence, especially in species where males

call to attract females, that males adjust their signals to the

transmission properties of the environment. These are often

textbook examples of adaptive plasticity. For example, stud-

ies show that anthropogenic factors, such as urban noise

and artificial lighting, impose direct selection on sexually

selected male traits [123,124]. Numerous studies have further

reported differences between urban and rural populations in

sexually selected traits, such as bird song ([125,126]; review:

[127]). Many of these differences are in the direction predicted

by functional considerations about signal transmission effi-

cacy [128]. It seems improbable that selection on male

genetic variation in song imposed by urban noise is respon-

sible for urban–rural population differences (but see [129]).

Given the recent origin of cities, these differences instead

implicate plastic responses due to learning, and even cultural

evolution. In general, it seems unlikely that male plasticity in

response to the signalling environment will affect mean

female LRS. It might, however, reduce female mate search

costs by increasing males’ conspicuousness; and it could

make it easier to discriminate between potential mates,

which would increase the strength of sexual selection which

can then affect female LRS (§5).
5. Male plasticity and female reproductive
output due to the genetic correlation (rG)

So far, we have broadly discussed how sexual selection might

affect female LRS (§§2 and 3), and then described the main

types of plastic responses of male sexual traits (§4). Next,

we ask how male plasticity affects mean female LRS, hence

population extinction (§1), driven by the genetic correlation

(rG) between non-random male mating success due to the

expression of sexually selected traits and female LRS. We

mainly emphasize the role of condition-dependence (i.e.
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placed in the same direction and by the same amount (Dm ¼ Df ).
Genes under natural selection in males are therefore likely to benefit females
and the inter-sex genetic correlation for fitness (rMF) is positive. In (b) the
novel environment causes the new trait optima for each sex to shift in oppo-
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intra-locus sexual conflict, i.e. rMF is negative. Finally, (c) represents a case in
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different amounts (here Dm , Df ), such that rMF, while briefly positive,
becomes more negative the further the mean trait value in the population
surpasses the new male optimum.
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plasticity when due to the environment) in male sexually

selected traits.

In general terms the observed phenotypic response to

selection (R) of a trait in a two-trait system is

Rx ¼ h2
xSx þ rxyhxhySy, ð5:1Þ

where h2¼ VA/VPhenotype¼ heritability, and S¼ selection

differential.

Here we can think of x ¼ female LRS, y ¼male mating

success, so rxy ¼ rG (equations 11.6 and 19.3 in [130]). If the

genetic correlation (rG) between female LRS and male sexual

competitiveness is positive then non-random mating due to

sexual selection on males hastens the fixation of genes that

improve female LRS above that due to natural selection on

female LRS. The magnitude of rG depends on the additive

genetic variation (VA) in male mating success and female

LRS and their covariation (r ¼ covar(x, y)/
p

[var(x)var(y)]),

while the correlated response to selection on male mating

success on female LRS due to a non-zero rG also depends

on the heritability of male mating success. If sexual selection

is weak (i.e. variation in mating success is mainly due to

chance) then there is little difference between mean male

mating success and the mating success of those males that

breed, so S for mating success is small; and the heritability

of male mating success is also low because there is no effect

of genetic variation in sexual competitiveness on male

mating success. In the absence of sexual selection, a positive

rG has no effect on female LRS. Simply put, if females mate

randomly they do not disproportionately mate with males

with genes that elevate female LRS, even if rG ¼ 1.

Given condition-dependent expression of sexually

selected male traits, theory suggests that rG is more positive

in a novel or rapidly changing environment, as both sexes

tend to have phenotypes that are similarly displaced from

their selected optima (figure 1a). Genes under natural selec-

tion in males are therefore likely to benefit females because

they will equally move females towards their new optimum.

If so, the inter-sex genetic correlation for fitness (rMF) is posi-

tive [45,46]. More specifically for rG, some of the VA in

condition-dependent, sexually selected male traits that deter-

mine male success is due to genes that otherwise improve

naturally selected traits (§4). As such, more competitive

males carry genes that tend to elevate mean female LRS if

natural selection acts concordantly on both sexes; hence

rG. 0. In contrast, in a stable environment, genes that are

under consistent selection in both males and females (e.g.

genes for condition) tend to reach fixation. The VA in con-

dition is then reduced so that a greater proportion of the

standing additive genetic variation in LRS and male mating

success is attributable to sexually antagonistic genes; hence

rG, 0. Studies that compare rMF (often, but not always, iden-

tical to rG; see §2) between populations that are either well or

poorly adapted to the local environment suggest that rMF is

more positive in novel environments ([34,70,131]; but see

[132–134]), although a full meta-analysis is still needed. Of

course, several key assumptions underlie the claim that rG

is more often positive in novel environments [34,46,108].

First, if additive genetic variance changes owing to gene-

by-environment (G � E) interactions [134], this can affect rG

or rMF in unexpected ways. To take an extreme case, rG ¼ 0

if there is no additive genetic variation in male mating suc-

cess in a new environment where chance alone determines

which males mate. For example, consider what happens in
the case of a sexually dichromatic cichlid fish with female

mate-choice based on male colour that lives in clear water if

the environment becomes highly turbid [135–137]. Even if

condition still determines male coloration, bright males do

not have higher mating success and the link between con-

dition, which still elevates female LRS, and male mating

success is broken. Second, sex-specific optima in a novel

environment might be associated with greater intra-locus

sexual conflict. For example, consider a population with a

mean phenotype for a naturally selected trait that is inter-

mediate between the male and female optima. A standard

assumption is that, in the novel environment, the trait

optima are displaced in the same direction for both sexes

[138] (figure 1a). If, however, they are displaced in opposite

directions then the potential for intra-locus sexual conflict
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will increase (figure 1b; see also fig. 1 in [134]). Even if the

new sex-specific optima are displaced in the same direction,

if they are further apart in the novel environment then rG

will tend to be more negative once the population mean

trait exceeds the new optimum of one sex (figure 1c). Third,

even if sex-specific optima are minimally displaced, there

could be greater sexual antagonism in a novel environment

owing to sex-specific G � E interactions. For example, a gen-

otype beneficial to both sexes in the original environment

could produce a phenotype that is displaced much further

from the female than male optimum in the novel environ-

ment. This is plausible given that a novel environment

might affect sex-specific life histories (i.e. the sexes differ

more in the particular traits that increase their condition

owing to, for example, greater sex differences in the available

prey types). The interested reader is referred to [108] for a

useful summary of other ways in which rMF, rG (and S)

might be affected by a changing environment.

So what role does male plasticity play in increasing the

extent to which sexual selection on males increases female

LRS in a novel environment? Unfortunately, most theoreti-

cal studies of how sexual selection facilitates adaptation

implicitly assume that sexually selected traits are condition-

dependent. This is because it is the only obvious mechanism

to link the process of females disproportionately mating with

males with greater investment in sexually selected traits

(usually modelled assuming female choice) to genetic benefits

that elevate female reproductive success [13,45,46,106].

However, this approach precludes answering the broader

question of whether rG is more positive, sexual trait heritability

(h2¼ VA/VP) is higher, or S is larger in a novel environment if

sexually selected traits are phenotypically plastic instead of

fixed in expression (i.e. whether they increase the value of

rxyhxhySy in equation (5.1)). We can, however, still ask how

sexually selected male traits being condition-dependent

might affect the values of these three key parameters when

the environmental changes. It is worth noting here that each

of these terms incorporates elements of the other so they are

not independent (e.g. VA affects the value of rG and

h2
male mating; and h2

male mating incorporates an element of S, i.e. if

S ¼ 0 then h2
male mating ¼ 0).

(a) Plasticity and the heritability of male mating
success

Condition-dependence implies that the environment affects

phenotypic variation in sexually selected male traits, hence

sexual competitiveness, and mating success. The degree of

phenotypic displacement of the average male from the natu-

rally selected optimum in a novel environment is likely to

affect the distribution of male condition, hence VP ([102],

fig. 1 in [134]). Males will generally be in poorer condition,

and the resultant decline in mean condition is likely to

be associated with greater variation in condition (see

[108,139]). This implies that male mating success has lower

heritability in a novel environment owing to the larger VP,

but heritability (VA/VP) also depends on VA. Additive genetic

variation in condition, hence sexual trait expression, is likely

to change in unpredictable ways in a novel environment

simply because of G � E interactions. This makes it unlikely

that we can predict how condition-dependence will affect

heritability. There is, however, some evidence from meta-ana-

lyses that heritability is lower in less favourable
environments, although this is contingent on the type of

trait being measured [140]. One explanation for lower

heritability of condition in less favourable environments

(i.e. when extractable resource availability is lower owing to

maladaptation) is that there is a minimum threshold below

which individuals die, which reduces VA for condition

among surviving males.
(b) Plasticity and the strength of sexual selection
The strength of sexual selection affects both S and h for

mating success in equation (5.1). The heritability of male

mating success depends on non-random variation in mating

success due to sexual selection on males (because this creates

the necessary link between VA in male sexually selected traits

and mating success). We therefore need to know how a novel

environment changes the types of males that females choose,

and what factors determine which males win fights, or have

greater sperm competitiveness.

Initially, greater VP for male condition in a novel environ-

ment seems likely to increase the strength of selection S
because the contrast between high and low condition males

is exacerbated. But this need not be the case. For example,

the extent to which choosy females discriminate between

males based on ornament size might decline when the

mean ornament size is smaller owing to males being mal-

adapted and in poorer condition. This could occur if

females use size-based threshold rules to determine which

males are suitable mates: if most males fall below the

threshold, they will be equally (un)attractive as mates. More

generally, phenotypic variance in traits depends on how

resources are allocated to different sexually and naturally

selected traits. The relationship between the mean condition

of males and how males allocate resources to different con-

dition-dependent traits is hard to predict (§6). Plastic shifts

in allocation, even if only among sexually selected traits,

could lead to unexpected outcomes. These include males in

better condition being less successful because plastic

responses are maladaptive in the novel environment. This is

plausible because these responses have evolved based on

females’ behaviour in the original environment. For example,

greater investment into ejaculate size by males in better con-

dition might be disadvantageous if females in a novel

environment do not mate multiply. In sum, condition-depen-

dent changes in allocation could alter VP in key sexually

selected traits in ways that change the proportion of variation

in mating and fertilization success that is attributable to VA in

condition, thereby reducing the variation in male mating suc-

cess, which also increases female LRS. Similar adverse

outcomes for female LRS could arise when males plastically

respond to cues about the social, or even signalling, environ-

ment that alter covariation between VA in condition and male

mating success.

Another way that male plasticity could weaken sexual

selection is if males respond to social cues by ‘specializing’

in increasing their success at certain stages of reproduction

(e.g. mate acquisition versus fertilization). Here we note

that, for ease, we previously treated sexual selection as synon-

ymous with variation in mating success in equation (5.1).

Strictly speaking we should refer to ‘variation in fertilization

success that arises from the combined effects of female mate

choice, cryptic choice, the intensity of sperm competition, and

how winning male–male contests elevates mating and
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fertilization success’. For brevity we do not. Specialization

can reduce variation in male reproductive success under

sexual competition if males make the ‘best of a bad job’

(e.g. small males or those in low condition sneak rather

than court [141]). More generally, when males plastically

adjust their investment in sexually selected traits to take

advantage of information about individual females, this can

reduce variation in male fitness. For example, males can

plastically adjust ejaculate size based on cues about a female’s

previous mating history or the likelihood that she will

re-mate [113].

Conversely, plasticity could increase VP in male reproduc-

tive success under sexual competition. For example, a lack of

detectable variation among males in one trait in a novel

environment could favour females that shift their attention

to assessing males using another trait ([135]; see also [142]).

If males plastically adjust their investment into sexual traits

that are still detectable by females [143], this could increase

(or decrease) the variation in attractiveness among males

depending on the ease with which females can discriminate

among males for different trait–environment combinations.

In general, although many studies have documented that

plastic responses affect which males mate or sire offspring,

far fewer studies have quantified how this affects the net

strength of sexual selection on different male traits.

(c) Plasticity and rG
To recap, rG depends on VA in male success under sexual

competition, VA in female LRS, and their covariation. We

have already discussed how condition-dependence might

affect VA in male success via the heritability (VA/VP) of

male success. However, we glossed over the possibility that

the proportion of VA in male success attributable to condition

changes across environments. This will affect the covariation

between male success and female LRS. For example, if most

VA in male success is due to sexually antagonistic genes

then rG will be negative. A major consideration is therefore

how male plasticity, other than that due to condition-

dependence, affects the proportion of VA in sexually selected

traits attributable to sexually antagonistic genes. To our

knowledge, few empirical or theoretical studies have

explored this question. For example, does plastic expression

by males of sexually selected traits in response to changes

in social cues, such as lower population density in a novel

environment, decrease the likelihood that male sexual traits

are associated with genes that elevate female LRS?
6. Direct effects of males on female reproductive
output

Males with greater expression of certain sexually selected

traits can either elevate or depress the LRS of their mates

(via rP) §2(a,b). For this to affect mean female LRS there

must be sexual selection so that some males have higher

mating success than others. More generally, sexual compe-

tition among males can affect female LRS irrespective of

which males end up mating §2(c). Any effect of male plas-

ticity on mean female LRS therefore depends on how it

affects the strength of sexual selection and which male

traits increase males’ success (i.e. are they those that increase

or decrease female LRS?). We have already discussed the
strength of selection in §5 so we now focus on plastic changes

in selected male traits.

First, it seems self-evident that the mixture of plastic

responses by males to social cues, the signalling environment

and the total resources they acquire and assimilate (i.e. con-

dition) owing to being in a different environment makes it

almost impossible to predict how resources will be allocated

to different sexually and naturally selected traits. Less

obvious, however, is the fact that it is still difficult to make

predictions even if we only consider adaptive allocation of

resources to different condition-dependent traits [95]. The

adaptive response to an increase in condition driven by greater

resource acquisition is to allocate these additional resources

to the trait with the greatest marginal fitness gains. (In a

novel environment, where fewer resources are available, we

can treat this as a question of reduced investment into the

trait where there will be the smallest marginal decrease in fit-

ness.) This suggests that additional resources will be allocated

exclusively to a single trait with the highest gain, such that

only a single trait exhibits positive condition-dependence.

There are, however, general reasons to believe that marginal

fitness gains will not consistently differ among traits as a

male’s condition changes. First, investment into a trait often

yields diminishing fitness gains. For example, whenever a

trait increases the probability of a particular outcome, such

as detection by potential mates, it cannot be increased

beyond its maximum value of 1. Second, the marginal fitness

gains from different traits are rarely independent. Fitness

gains depend on the current values of other traits, and

traits tend to function most efficiently if they are ‘balanced’

so that an individual operates as an integrated unit. For

example, a longer tail ornament might be favoured by

female choice, but it will eventually become so long that

investment into larger wings to maintain the ability to fly is

likely to be more advantageous than a further increase in

tail size. This should lead to plastic responses with increased

expression of multiple traits in environments where males

have access to more resources. Third, some traits might

become more efficient (hence have greater fitness gains)

when expressed at a higher absolute level (e.g. [144]). If so,

better condition could induce a shift in allocation that mani-

fests as an increase in the focal trait, alongside a decrease in

other (fitness-enhancing) traits [95]. This is one reason why

both acquisition and allocation are themselves sometimes

described as condition-dependent (e.g. [145]).

Clearly, the sheer number of possible plastic responses by

males to a change in condition that arise from being in a

novel environment makes general predictions about plasticity

in specific sexually selected traits problematic. There is no

guarantee that greater condition leads to equal increases in

all condition-dependent sexually (or naturally) selected

traits. Broadly speaking, optimal condition-dependent allo-

cation depends on the shape of the multivariate function

that links traits to fitness. This function depends on species-

specific details, such as morphological integration, the

ecological context and, in the case of sexually selected

traits, how the intensity and type of sexual selection (e.g.

mating versus sperm competition) change with the environ-

mental availability of resources that affect male and female

condition. Consequently, when sexually selected traits vary

in their effects on female LRS (e.g. a reduction in male song

rate is unlikely to damage a female, while investment into

seminal toxins is likely to induce female mortality), it is
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hard to determine whether condition-dependent plasticity

will elevate or lower female LRS when males are in a novel

(usually more stressful) environment.

When there are social cues about the level of mating or

sperm competition there is often a clear theoretical prediction

about how male investment will change for specific traits;

and empirical studies typically report plastic responses in

the predicted direction (i.e. greater investment in ejaculates

as sperm competition increases) (review: [111]). However,

as noted for condition-dependence, it is a challenge to predict

the adaptive response when sexual selection acts on multiple

traits. Specifically, the social setting could cause the marginal

benefits of investment into different traits to change because

of shifts in the relative importance of different sexual selec-

tion processes (e.g. courtship versus sperm competition).

Even when models make predictions about optimal invest-

ment into testes versus weapons/ornaments in different

social contexts (e.g. [94]), they are hard to test because: (a)

there are simplifying assumptions about the constancy of

natural selection that do not apply if the social setting affects

naturally selected traits; (b) most models predict evolution

due to changes in gene frequencies, rather than the optimal

plastic response, but the two outcomes are not necessarily

in agreement (§8); (c) there is within-population variation

in condition. All these factors makes it harder to predict the

optimal plastic response for each individual (for a similar

problem see [95]).

Given no clear prediction about how males will allocate

resources to different traits depending on their condition,

determining the allocation patterns that are likely to arise in

nature is chiefly an empirical matter. Even then, the relative

amount of variation in acquisition versus allocation among

individuals affects the observed population level correlations

between traits ([146]; review: [145]). The two main areas with

relevant data are: (a) whether condition-dependent male

sexual signals are honest indicators of parental care, and (b)

whether males with greater investment into sexually selected

traits (preferred males, or males that win fights for access to

females) benefit or harm their mating partners compared

with the average male.

(a) A ‘good parent’ model suggests that condition-dependent

sexual traits honestly signal parental care, while ‘differen-

tial allocation’ models predict that sexual selection on

males lowers parental care owing to the resource trade-

offs that males face [147–149]. This is why the relation-

ship between condition-dependent male sexual signal

and paternal care is unclear, and both outcomes seem

possible [150]. However, the fact that female mating pref-

erences might evolve in response to the direction of the

relationship would appear to favour males being ‘good

parents’, which could even lead to the evolution of

male-only care [151]. But the enduring challenge is to

explain why attractive males provide more care when

mating precedes caring. In general, there must be

inherent constraints on preferred males, perhaps owing

to the social setting (e.g. strict monogamy [149], or

because early mate desertion by females increases the

value of male care [152]), such that males gain more by

providing the ‘advertised’ care than redirecting resources

to pursue additional mating opportunities (see also [56]).

The extent to which such constraints are associated with

plastic male responses to condition due to environmental
variation is an open question, but it is one way in which

plasticity could facilitate the process of sexual selection

increasing mean female LRS. In general, there is high

variation among species in the link between male

sexual trait expression and how it affects female LRS

through parental care, fertilization success, or other fac-

tors that influence female fecundity (e.g. nuptial gifts)

[55].

(b) It seems unlikely that females would prefer males that

lower their LRS, but this occurs in some species, and

presumably reflects an on-going ‘arms race’ between

seduction and resistance that males are currently ‘win-

ning’ (e.g. [50,51,153]). Mating with males who are more

sexually competitive can still increase a female’s fitness

even if it lowers her LRS if the costs of mating resistance

are higher than accepting such males as mates. However,

selection on females could lead to the evolution of the abil-

ity of females to reduce mating costs [154]. The net effect is

that sexual selection on males can lower mean female LRS.

But, to what extent does male plasticity influence this pro-

cess? First, condition-dependent expression of damaging

male traits might magnify the harmful effects of mating

with more sexually competitive males. Intriguingly, how-

ever, we know of no systematic review that determines the

extent to which, for example, experimental manipulation

of male condition is associated with increased expression

of specific male traits that appear to harm females, such

as seminal toxins and genital structures (but see [155]).

There is, however, evidence that social cues of the intensity

of sperm competition lead to plastic responses in ejacu-

lates (e.g. protein content and sperm count) that lower

female LRS [122,156]. In addition, recent studies suggest

that greater relatedness between competing males can

result in phenotypic responses that reduce the extent

to which males lower female LRS when competing for

fertilizations (e.g. [157,158]).

7. Plasticity and females
We have emphasized sexual selection on males but, of course,

sexual selection also acts on females (e.g. female–female

competition for breeding opportunities and male mate

choice) (reviews: [30,159,160]). What effect do sexually

selected female traits have on mean female LRS? Clearly,

mean female LRS must decline if there is any fitness trade-

off with naturally selected traits [161]. If females simply

used a lottery rather than expended resources on competition

to determine contested breeding opportunities, then the ‘win-

ning’ female could invest more in reproduction. Of course,

the same is true for males, but a key difference is that the

mean LRS of breeders is likely to be more strongly affected

by which females, rather than males, breed. This claim is

based on the assumption that there is greater variation in

female fecundity and parental investment than in direct

male effects on female LRS §2(b). A more interesting question

is: to what extent does plasticity in sexually selected female

traits increase the realized fecundity of breeders when breed-

ing sites and/or male mates are a limited resource? If female

investment in sexually selected traits is condition-dependent,

but the proportion of resources invested is smaller for females

in better condition (so that they remain more fecund), then

plasticity might increase the mean LRS relative to that

observed if females stochastically acquired breeding
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opportunities. To our knowledge, the circumstances where

condition-dependence of female sexually selected traits elev-

ates mean female LRS have not been formally modelled. We

refer the reader to [161] for an extensive review of female

ornament evolution.

Female plasticity is mainly studied by asking how it

affects male-imposed costs, or how it allows a female to

choose males that increase her LRS or the fitness of her off-

spring. We consider both. First, recent models examine in

detail how plasticity affects sexually antagonistic selection

[162,163]. Specifically, they ask how it affects the conflict

load (fitness reduction compared with a hypothetical best-

case scenario) of individuals involved in pairwise inter-

actions, when each party controls an antagonistic trait that

decreases the other party’s fitness. The focus is on a situation

where plasticity is unilateral, i.e. only one party shows a plas-

tic response, while the other’s strategy evolves owing to

differential success of genotypes. An illustrative case in

which females are the plastic party is post-copulatory

sexual conflict, where males commit to a strategy by transfer-

ring seminal fluid proteins (SFPs) that females then respond

to plastically. The general finding is that plasticity, compared

with neither party showing plasticity, always reduces the

conflict load of the non-plastic party, but that of the other

party can either increase or decrease [162,163]. The intuitive

reason is as follows. There are two directions in which an

individual of party P (for ‘plastic’) might adjust its antagon-

istic trait p when faced with a mutant of party N (for ‘non-

plastic’) with a slightly deviant antagonistic trait n. If p is

adjusted in the same direction as the change in n (i.e. less

antagonistic mutants elicit a less antagonistic response),

then plasticity selects for lower antagonism in N. By contrast,

if p is adjusted such that more antagonistic mutants elicit a

less antagonistic response, then plasticity selects for greater

antagonism in N. Thus, depending on the direction of

the plastic response, plasticity � selects for either more or

less antagonism in N, either increasing or reducing P’s con-

flict load. In contrast, N’s conflict load always decreases

because N always evolves in the direction that elicits a less

antagonistic response. This is an intriguing result, but its

applicability to post-copulation sexual conflict probably

depends on biological details. For example, if SFPs elevate

the oviposition rate, but females can restore a nearly optimal

rate with a plastic response, the evolution of more SFPs need

not increase the conflict load for females. Instead, regardless

of the absolute amount of SFPs transferred, the females’ con-

flict load might reflect only the extent to which they are

actually manipulated. Similarly, regardless of the absolute

magnitude of a ‘female resistance trait’, a male’s conflict

load might reflect only the extent to which his mate’s ovipos-

ition rate deviates from his optimum. There is no compelling

reason why this deviation will necessarily be smaller when

females exhibit a plastic rather than an evolved response.

Second, many studies have investigated plasticity in

female mate choice. Empirical studies have shown that

choice is plastically adjusted to external factors, such as the

energetic costs of mate sampling, and that shifts in the

threshold for acceptable mates occur based on the type and

rate at which prospective males are encountered [164].

There is also good empirical evidence that female mate

choice is often condition-dependent [165]. It is reasonable

to assume initially that these are mainly cases of adaptive

plasticity because the inherent costs of mate choice suggest
that selection favours random mating if choosiness provides

no benefits [49]. The genetic benefits of choosing certain

males as mates are small or absent in many species [166],

so adaptive mate choice implies that plasticity is likely to

elevate female LRS. It should be noted, however, that while

plasticity might increase female LRS in the short-term, it

could favour the evolution of male traits that lower female

LRS. An obvious example is that greater mean female choosi-

ness due to plasticity selects more strongly for coercive male

traits that tend to lower females’ fecundity or longevity [62].

If natural selection acts similarly in both sexes there is a

scenario in which condition-dependent female choice can

elevate mean female LRS. The opening premise is that local

adaptation is reduced when natural selection differs among

populations and there is gene flow (migration). The rate of

local adaptation is increased if females prefer locally adapted

males, thereby reducing gene flow. In general, female mating

preferences lead to local adaptation if they favour males in

good condition (i.e. locally adapted) (but see [13] for com-

plexities). This general idea was modelled by Veen & Otto

[167], who developed a simple model with two patches that

differ ecologically and two evolving traits: an ecological

trait and a female mating preference. The strength of the pre-

ference for males in good condition was contingent on the

female’s ecological fit to the local patch (i.e. her condition).

In this case, condition-dependent female preferences facilitate

local adaptation: the costs of choice tend to slow the spread of

a mating preference, but with condition dependence these

costs are disproportionately borne by poorly adapted females

(who are in worse condition), thereby lowering their fitness

relative to that of better adapted females.
8. Do adaptive plastic responses mirror the
direction of evolution?

It is tempting to assume that adaptive plasticity will produce

a phenotypic shift in the same direction as selection on geno-

types for fixed traits. This assumption is not universally

justified. For example, Kahn et al. [168] modelled sex allo-

cation decisions where mothers can re-allocate parental

resources to produce more offspring when some die during

the period of parental investment. They examined the effect

of environmental stress that increases the mortality of sons

during the period of parental investment. Although the

adaptive plastic response of mothers is to produce fewer
sons when only some mothers experience this stress, the

population as a whole will evolve to produce more sons

when the stress applies globally. This pattern arises because

a locally-favoured trait (i.e. producing daughters) faces nega-

tive frequency-dependent selection at the population level, so

it is not universally advantageous. Opposing directions of

adaptive and evolved responses could occur in many other

frequency-dependent selection scenarios.

More generally, game theory often predicts the coexistence

of alternative phenotypes under negative frequency-

dependent selection in a mixed evolutionarily stable strategy

(ESS) [169]. A mixed ESS can manifest either as a genetic

polymorphism or probabilistic expression of phenotypes

(at the same frequencies as fixed phenotypes). However,

if heterogeneity in local factors makes one phenotype slightly

advantageous, then selection might favour a plastic response

to produce the locally favoured phenotype. For example, in
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some spiders a mixed ESS is predicted whereby males are

either monogynous (mate with one female only) or bigynous

(mate with two females) [170]. If the mortality risk of

mate-searching varies among males, then males with a

below-average risk should plastically exhibit bigyny [171].

But, depending on the adult sex ratio, greater mortality costs

of mate searching at the population level can either increase

or decrease the frequency of bigyny [170]. Whether or not

adaptive plastic responses match the direction of evolution of

fixed differences in response to the same environmental cues

depends on details that do not readily permit generalizations.

However, mismatch hinges on negative frequency-dependent

selection, and many adaptations are frequency-independent

(e.g. temperature tolerance). If selection on a trait is fre-

quency-independent, we suggest that it will usually be true

that, following an environmental change, adaptive pheno-

typic plasticity and selection on mean trait values will shape

phenotypes to evolve in the same direction.
 oc.B
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9. Summary
Whether sexual selection hastens female adaptation to

environmental change, and thereby reduces the likelihood

of population extinction, is unresolved [5,11,13]. The extent

to which male phenotypic plasticity further enhances or

diminishes the effect of sexual selection is even harder to dis-

cern. We focused on female LRS rather than, as is standard in

sexual selection models, mean offspring fitness. We mainly

concentrated on a few ideas. First, sexual selection changes

the likelihood of population extinction if it affects which

males mate and this influences how many females breed

and their mean LRS. Second, although a range of environ-

mental cues induce plastic responses in sexually selected

male traits, the condition-dependence of these traits is the

factor most likely to affect female LRS in a changing
environment. This is because, under such circumstances,

sexually competitive males are more likely to transfer genes

that elevate female LRS than to have sexually antagonistic

effects. Third, condition-dependence is important when the

environment changes because it can alter the strength of

sexual selection, affect who mates, and change the allocation

of resources to different sexually selected traits that vary in

the extent to which they benefit or harm females.

We conclude that there are no general rules determining

whether plasticity of sexually selected traits will reduce or

elevate the risk of population extinction. This unsatisfying,

but almost inevitable, conclusion concurs with inferences

drawn about the effects of phenotypic plasticity on eco-

evolutionary dynamics [172]. There is, however, a glimmer

of hope. Recent theoretical models of sexual conflict over

mating [162,163], offspring sex ratio adjustment based on

sire attractiveness [60,173], and whether plastic maternal

effects are more likely than plastic responses by offspring to

generate adaptive outcomes [174] all show that there is the

potential to make predictions about the extent to which

different forms of phenotypic plasticity in sexually selected

and allied traits facilitate adaptive evolution. The challenge

now is to produce models that explicitly incorporate pheno-

typic plasticity, in order to ask questions about the role of

sexual selection in facilitating population persistence in the

face of rapid environmental change (see [175]).
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