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Gender differences in individual variation in

academic grades fail to fit expected patterns
for STEM

RE. O'Dea® "2, M. Lagisz', M.D. Jennions® 2 & S. Nakagawa® '

Fewer women than men pursue careers in science, technology, engineering and mathematics
(STEM), despite girls outperforming boys at school in the relevant subjects. According to the
‘variability hypothesis’, this over-representation of males is driven by gender differences in
variance; greater male variability leads to greater numbers of men who exceed the perfor-
mance threshold. Here, we use recent meta-analytic advances to compare gender differences
in academic grades from over 1.6 million students. In line with previous studies we find strong
evidence for lower variation among girls than boys, and of higher average grades for girls.
However, the gender differences in both mean and variance of grades are smaller in STEM
than non-STEM subjects, suggesting that greater variability is insufficient to explain male
over-representation in STEM. Simulations of these differences suggest the top 10% of a class
contains equal numbers of girls and boys in STEM, but more girls in non-STEM subjects.
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child entering school has endless answers to the question

‘what do you want to be when you grow up? By the end

of school, these have narrowed to a set of career aspira-
tions that are consistent with his or her self-concept (the way an
individual perceives themselves, and believes they are perceived
by others!). If the child is a girl, then she is likely to graduate with
career aspirations with lower earning potential than a male
classmate?. This phenomenon contributes to ‘occupational seg-
regation’, and there are numerous incentives to reduce its pre-
valence. Schooling has a strong influence on the career aspirations
of students?, so addressing gender differences in the workforce
requires that we understand how gender affects school
achievement.

Self-concept is heavily influenced by school achievement!4,
and high-performing students are more likely to pursue well-paid
careers, such as science, technology, engineering and mathematics
(STEM)-based jobs®. Girls tend to earn higher school grades than
boys, including in STEM subjects®, so why does this advantage
not transfer into the workforce? The variability hypothesis, also
called the greater male variability hypothesis, has been used to
explain this apparent contradiction’—it is based on the tendency
for males to show greater variability than females for psycholo-
gical traits® (and for other traits across multiple species’), leading
to relatively fewer females with exceptional ability!®. However,
the gender gap in employment within many highly paid occu-
pations exceeds gender differences in variability (e.g. some math-
intensive occupations employ far fewer women than the pro-
portion of girls who score in the top 1% of maths tests!!).
Therefore, occupational segregation cannot be simply caused by
fewer women having the requisite ability for high-status jobs.

Girls are susceptible to conforming to stereotypes (stereotype
threat!?) in the traditionally male-dominated fields of STEM, and
girls who try to succeed in these fields are hindered by backlash
effects!3. STEM are high-paying fields that employ fewer women
than men!415, and also require a high level of mathematical
ability'®. Evidence from standardised tests administered to children
and adolescents indicates a greater gender difference in variation
in performance in STEM subjects than other subjects!’~1%, and
an excess of males amongst the top-achieving students20-22,
Therefore, a girl who performs well at school may notice that a
greater proportion of the students who do better than her in
mathematics and science classes are male, when compared to the
proportion in other subjects. This, when combined with stereotype
threat and the risk of backlash for behaving against gender ste-
reotypes!3, could deter girls from pursuing a STEM-related career.
Based on this hypothesis, and assuming equivalency of gender
differences for standardised tests and class grades, we present an
illustration of the predicted grade distributions for female and male
students in Fig. 1.

Gender differences in variability have been tested using scores
on standardised tests!®?3, but we are unaware of any study
describing gender differences in the variability of teacher-assigned
grades. While there are moderate-to-strong correlations (sensu?4)
between grades and test scores>>=23, there is also a stark gender
difference. Girls tend to receive lower test scores relative to their
school grades, whereas boys receive higher test scores relative to
their school grades. There are multiple conjectures to explain this
discrepancy in mean gender differences between tests and grades
(e.g. on average, girls behave better, which gives them an
advantage in grades, but they fare worse when tested on novel
material that was not covered in class)?®. Regardless of the source
of these differences, teacher-assigned grades are likely to affect
students’ lives, and it is a reasonable conjecture that they have a
greater impact on students’ academic self-concept than standar-
dised test scores!. Furthermore, grades are at least as good a
predictor of success at university (measured by grade point

average and graduation rate)3%31. Therefore, if gender differences
in variability were impacting girls’ decisions to pursue STEM, we
would expect to see these differences reflected in school grades.

Here, we present a systematic meta-analysis on the effect of
gender on variance in academic achievement using teacher-
assigned grades. While grades are a more subjective measurement
than test scores, we also include data from university students,
whose grades are less affected by teachers’ assessment of beha-
viour. While earlier meta-analyses have examined how mean
academic achievement differs between the sexes®32-33, mean and
variance differences should be examined together, as their mag-
nitudes can be correlated (mean-variance relationship®#). For-
tunately, a recently published method allows for a meta-analytic
comparison of variances that takes into account any
mean-variance relationship3>.

Based on the variability hypothesis, we expected female grades
to be less variable than those of males. To test this hypothesis, we
extended a previous meta-analysis by Voyer and Voyer® on dif-
ferences in the mean grades of students from ages 6 through to
university. We used a more appropriate effect size to compare
means, and another effect size to compare variances (Methods).
We found that grades for female students were less variable than
male grades. Then, focusing on school students (a relatively
unbiased sample compared to university students), we found that:
(1) the gender difference in variability has not changed noticeably
over the last 80 years (1931-2013); (2) gender differences in grade
variability are already present in childhood, and do not increase
during adolescence; (3) finally, gender differences in grade var-
iance were larger for STEM than non-STEM subjects, contrary to
our expectations shown in Fig. 1.

Results

Description of dataset. Our dataset contained 346 effects sizes
extracted from 227 studies (Supplementary Data 1), representing
820,158 female and 826,629 male students. Fifty-two percent of
the effect sizes were for ‘global’ grades (i.e. GPA), 26% were for
STEM (mathematics and science), 19% for non-STEM (language,
humanities, social science) and 3% for miscellaneous subjects.
North American data dominated the dataset, with 70% of the
effect sizes. Within the North American sample, 24% of studies
were on a racially diverse cohort of students, 23% were on
majority White/Caucasian students, 9% were on majority Black/
African American students, 1% were on majority Hispanic/Latino
students, and 43% of studies did not provide information on the
racial composition of students. In total, 62% of the effect sizes
came from school students (247,582 girls and 253,073 boys), and
the remainder from university students. The original grades were
awarded on a few different grading scales (Supplementary Figs. 1
and 2).

Gender differences in variability. Overall, girls had significantly
higher grades than boys by 6.3% (natural logarithm of response
ratio (InRRgyeran(mean): 0.061, 95% confidence interval, CI:
0.052 to 0.070), with 10.8% less variation among girls than
among boys (natural logarithm coefficient of variation ratio
(InCVRyeran(variance): —0.114, CI: —0.133 to —0.095) (Supple-
mentary Table 2; Fig. 2). The gender differences in mean grades
were significantly larger at school than at university by 2.7%
(InRRychool-uni difit —0.028, CI: —0.044 to —0.011; Supplementary
Table 3). The gender differences in variation were also larger at
school than at university, but the difference of 4.2% was non-
significant (InCVRgchool—uni aiftt 0-041, CL: 0.002 to 0.080; Sup-
plementary Table 3). To test for moderating factors, we only used
the school data in subsequent analyses. We excluded university
students because there is self-selection among students in terms
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< On average girls grades better,
« Girls grades more consistent,
» Fewer top scoring girls

« On average girls grades much better,
« Girls grades similarly variable,
« More top scoring girls

« On average girls grades slightly better,
« Girls grades much more consistent,
« Many fewer top scoring girls

Fig. 1 Predicted distributions of school grades of girls (red) and boys (blue). a The grade distribution overlaps represent the prediction that, when all grades
are considered, girls on average earn higher grades and are less variable than boys, although there are more highly performing boys than girls at the upper
end of the achievement distribution. b In non-STEM subjects, the difference in mean grades between girls and boys may be even more pronounced in
favour of girls, which, coupled with similar variability, should result in many more highly performing girls than boys at the upper end of the achievement
distribution. ¢ In contrast, for STEM grades, we expected less difference between boys and girls mean grades and more grade variability for boys, resulting
in boys dominating at both the top and bottom of the achievement distribution

of who applies for (and is then accepted at) a university. This
selection process makes undergraduates and postgraduates
unrepresentative of the general population. The results from
analyses for the whole dataset and for the university subset are
provided in Supplementary Tables 2-10, 12, and 15-25 (the
university subset also had small sample sizes for STEM and non-
STEM subjects, making results from moderator analyses sensitive
to outlier studies).

Moderating effects of study year and student age. The higher
mean and lower variability of girls’ than boys’ grades have not
changed significantly over the past eight decades (Supplementary
Table 4, Supplementary Fig. 8A: InRRyudy year scaled (slope): 0-019,
CI: —0.017 to 0.055; Supplementary Table 4; Supplementary Fig. 8D:
thVRstudy year scaled (slope): —0.029, CI: —0.083 to 0025) Within
genders, variability in grades showed a non-significant trend towards
decreasing over time, but significantly more so for girls than boys
(Supplementary Table 5, Supplementary Fig. 8G: natural logarithms
of the coefficient of variation (InCV)swdy year boys-girls (slope difp: 0-032,
CI: 0.004 to 0.060). Student age did not affect the gap between girls
and boys mean grades or the gender difference in grade variability
(Supplementary Fig. 9, Supplementary Table 6). Within genders,
variability in grades showed a non-significant tendency to decrease as
students aged (Supplementary Table 7, Supplementary Fig. 9G:
lnCVsmdem age boys—girls (slope)* 0.010, CI: —0.067 to 0087), and to
decrease faster for boys than girls (Supplementary Table 7, Supple-
mentary Flg 9IG: lnCVstudent age boys—girls (slope diff)* —0.035, CL: —0.062
to —0.007).

Moderating effects of subject type: STEM versus non-STEM.
Girls’ significant advantage of 7.8% in mean grades in non-STEM
was more than double their 3.1% advantage in STEM. (Fig. 2a,
Supplementary Table 8: non-STEM: InRR,o, stem: 0.075, CI:
0.049 to 0.102; STEM: InRRgrgp: 0.031, CI: 0.011 to 0.051; the
difference: lnRRnon—STEM—STEM diffs —0.044, CIL: —0.065 to —0024)
Variation in grades among girls was significantly lower than that
among boys in every subject type, but the sexes were more similar
in STEM than non-STEM subjects (Fig. 2b, Supplementary
Table 9; STEM: 7.6% less variable grades; InCVRgrgpm: —0.079,
CI: —0.115 to —0.043; non-STEM: 13.3% less variable grades;
InCVR,on.stem: —0.149, CI: —0.199 to —0.099; the difference:
lnCVRnon—STEM—STEM diffs 0.070, CI: 0.028 to 0111) The greater

gender similarity in variability in STEM was due to girls’ grades
being significantly more variable in STEM than non-STEM
subjects (Fig. 2c, Supplementary Table 10, InCV giis sTEM-non-sTEM
aire. —0.101, CI: —0.170 to —0.033). In contrast, the variability of
boys’ grades did not differ significantly between STEM and non-
STEM subjects (Fig. 2c, Supplementary Table 10, InCVyy,
STEM-non-STEM diff: —0.030, CI: —0.102 to 0042)

The small values of all meta-analytic estimates of
gender differences in means and variances imply a large
overlap in the grade distributions between the two sexes.
The simulated distributions of girls’ and boys’ grades in Fig. 3
show the distributions of grades overlap more in STEM
(94.2%) than non-STEM (88.2%) subjects. For example, within
the top 10% of the distribution the gender ratio is even for
STEM, and slightly female-skewed for non-STEM. Results of
additional analyses are presented in Supplementary
Tables 13-25.

Discussion

Our overall result was consistent with elements of the variability
hypothesis: female students’ grades were less variable than those
of male students, but in contrast to expectations, the greatest
difference in variability occurred in non-STEM subjects. Average
female grades were also higher than males, corroborating the
findings of Voyer and Voyer® (Fig. 2). Gender differences in grade
variability of school pupils was unaffected by their age, weakly
affected by the year of study, and most strongly affected by
whether or not the subject was STEM.

From grade one onward, we found that girls’ grades were less
variable than those of boys. Across the last 80 years, the variability
in school grades has slightly decreased for both boys and girls
(albeit slightly faster for girls). This decline might reflect
increased student performance®, or greater reluctance to fail
students, i.e. grade inflation3”. These scenarios assume that there
is a ceiling effect on grades, whereby variance is reduced because
weaker students are shifted upwards, whereas the highest per-
forming students are bumped up against the ‘ceiling’ of the
highest possible grade awarded on the grading scale. Although we
do not see strong evidence for a ceiling effect in our dataset
(Supplementary Fig. 5), below we discuss how the ceiling affect
could underestimate the magnitude of gender differences in
variability.
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Fig. 2 Main meta-analytic results. Results of analyses on a ratios of the
grade means, b ratios of grade variabilities, and ¢ coefficients of variations
for girls (red) and boys (blue). Diamonds and circles represent meta-
analytic estimates of mean effect sizes, and their 95% confidence intervals
are drawn as whiskers. In a, natural logarithm of response ratio (InRR)
represents the average difference between girls’ and boys' mean grades;
positive values of InRR indicate lower boys' mean grades. In b, natural
logarithm coefficient of variation ratio (InCVR) represents the average
difference in grade variation between boys and girls; negative values of
InCVR indicate greater male variance. In ¢, natural logarithms of the
coefficient of variation (InCVs) are shown for boys and girls to illustrate
grade variation by gender; more negative values of InCV indicate less

variation. Data and code for reproducing this figure are available at
refs, 5253

Contrary to our expectations (Fig. 1), and those of many
others!0, the gender difference in variability was smaller for
STEM than non-STEM subjects (Fig. 2). When the small gender
gap in grade variability is combined with the small gender dif-
ference in mean grades, it indicates that in STEM subjects, the
distributions of girls’ and boys’ grades are more similar than in
non-STEM subjects (Fig. 3). One possible explanation is that
boys” are more affected by the ceiling affect in STEM than non-

STEM. For example, if a grading scale cannot distinguish between
students in the top 1% or top 0.1%, and if there exists a male skew
in the top 0.1% only in STEM but non in non-STEM, then gender
differences in variance would be underestimated in STEM. Wai
et al.?? tried to get around this ceiling effect by analysing seventh-
grade test scores explicitly designed to differentiate between
exceptional students. They found a female:male ratio of 0.25 in
the top 1% of students in STEM subjects, which is more imbal-
anced than our data suggests (Fig. 3c). While this finding is
intriguing, it should be noted that STEM careers are not restricted
to the exceptionally talented (although fields that subscribe to the
belief that talent is important for success tend to employ fewer
women38). Therefore, while our data does not preclude a gender
gap among the exceptionally talented, it nevertheless indicates a
practical similarity in girls’ and boys’ academic achievements,
which are likely to provide an imperfect but valid measure of the
ability to pursue STEM (Fig. 3).

Because students’ grades impact their academic self-concept
and predict their future educational attainment (e.g. refs. 1°), we
might therefore predict roughly equal participation of men and
women in STEM careers. However, the equivalence of girls’ and
boys’ performance in STEM subjects in school does not translate
into equivalent participation in STEM later in life. Is this because
grades are not measuring the abilities required to succeed in
STEM? Or does the relative advantage girls have over boys in
non-STEM subjects at school lead them to rationally favour
career choices with fewer competitors? We consider each of these
questions in turn.

We analysed school grades, where girls show a well-established
advantage over boys?®, whereas most previous tests of gender
differences in variability have focussed on test scores!®1%23, To
explore whether the smaller variability difference in STEM
compared to non-STEM is confined to school grades, we per-
formed a supplementary analysis of a large international dataset
of standardised test scores of 15-year-olds (see Supplementary
Note 2 for details). This supplementary analysis found gender
differences in variance that were consistent across subjects; girls’
test scores were more consistent than boys, with equivalent
gender differences in non-STEM and STEM subjects (Supple-
mentary Fig. 11). However, girls only showed a mean advantage
in non-STEM. Therefore, it appears that the mean differences
between test scores and grades are caused by shifts in the position
of girls’ and boys’ distributions, rather than changes in the shape
of distributions in STEM compared to non-STEM (girls’ dis-
tributions of both grades and test scores are narrower than boys’
distributions, but the difference is not more pronounced in
STEM). If girls perceive they have fewer competitors in non-
STEM subjects because, on average, fewer boys perform better
than girls, this might lead to a preference for non-STEM over
STEM careers3%:40,

Gender differences in expectations of success can arise due to
backlash effects against individuals who defy the stereotype of
their gender, and/or due to gender differences in ‘abilities tilt’
(having comparatively high ability in one discipline compared to
another). Women in male-dominated pursuits, including STEM,
face a paradox: if they conform to gender stereotypes, they might
be perceived as less competent, but if they defy gender stereotypes
and perform ‘like a man’, then their progress can be halted by
‘backlash’ from both men and women!34!. Furthermore, analyses
of test scores have revealed that girls are more likely than boys to
show an abilities tilt in the direction favouring non-STEM sub-
jects (i.e. receive higher scores in non-STEM compared to
STEM)*2. Our data are consistent with girls showing an ability tilt
in the direction of non-STEM subjects, although we cannot
compare individual student grades (Supplementary Table 11).
Intriguingly, there is evidence that balanced high-achieving
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Fig. 3 Inferred relative distributions of academic abilities of girls (red) and boys (blue). a STEM and b non-STEM school subjects, ¢ the proportion of girls in
each percentile. The relative mean and variance for each gender are based on the results of the meta-regression of school grades for school pupils, with
subject as a moderator. In a and b, dashed vertical lines indicate cutoff points, above which 25%, 5% and 1% of top-scoring pupils can be found. The

proportion of girls to boys across the distribution is shown in €, where values to the right on the x-axis correspond to the right tail of the achievement
distributions. f:m values represent ratios of top-scoring girls to boys above each cutoff point (i.e, f:m >1=more females; f:m <1= more males). Data and

code for reproducing this figure are available at refs, 5253

students—who possess the potential to succeed in disparate
fields—prefer non-STEM careers®3, and that girls are more likely
to be balanced than boys, at least among high achievers*%. A
female skew towards balanced abilities could be a manifestation
of them showing lower levels of between-discipline variability (i.e.
greater consistency across disciplines). Gender differences in
between-discipline variability, rather than within-discipline
variability, is an interesting avenue for future research.

A girl's answer to the question of ‘what do you want to be when
you grow up?’ will be shaped by her own beliefs about gender, and
the collective beliefs of the society she is raised in*>. While our
results support the variability hypotheses, we have shown that the
magnitude of the gender gap in STEM grades is small, and only
becomes male-skewed at the very top of the distribution (Fig. 3).
Therefore, by the time a girl graduates, she is just as likely as a boy
to have earned high enough grades to pursue a career in STEM.
When she evaluates her options, however, the STEM path is trod by
more male competitors than non-STEM, and presents additional
internal and external threats due to her and societies’ gendered
beliefs (stereotype threat and backlash effects). To increase
recruitment of girls into STEM, this path should be made more

attractive for them. A future study could estimate how male-skewed
we would expect STEM careers to be based solely on gender dif-
ferences in academic achievement, by quantifying the academic
grades of current STEM employees. Our study focussed on gender
differences in academic achievement, but understanding gender
differences in any trait would be improved by simultaneously
comparing gender differences in mean and in variability.

Methods

Literature search and study selection. We performed a systematic literature
search following guidelines from PRISMA (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses*®). The PRISMA flow diagram depicting our
search and screening process is shown in Fig. 4. We broadly followed the search
protocol used by Voyer and Voyer®. We searched three databases for articles
published between August 2011 and May 2015: ERIC, SCOPUS and ISI Web of
Science. We did not use the PsychINFO or PsycARTICLES databases used by
Voyer and Voyer®, as they were malfunctioning at the time of our search. We
searched for articles containing the term ‘school grade/s’, ‘school achievement/s’,
‘school mark/s’” or ‘grade point average/s’. The exact search strings used for each
database and additional details of the literature search are provided in Supple-
mentary Methods. While there was no clear signal of publication bias in the school
subset (Supplementary Tables 12, 25), a limitation of our literature search is that we
did not actively search for unpublished studies or theses.
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228 Studies:
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Fig. 4 PRISMA diagram showing the process of locating studies included in this meta-analysis. The full list of included studies, and the list of studies
excluded at the stage of full-text screening, are available in Supplementary Data 1 and 2

Eligibility criteria. To be included for data extraction at the full-text screening
phase, studies needed to present teacher-assigned grades or global GPA (grade
point average, i.e. grades averaged across many subjects) for a cohort containing
both male and female students. The students could be from grade one and above.
These criteria excluded kindergarten and single-sex studies, and self-reported
grades or test data. Because of socio-cultural effects on gender differences, we
required samples of students that took classes together; we therefore excluded
online courses. We also excluded retrospective studies comparing adults that were
not in the same study cohort. Where longitudinal data was reported, we included
only the first year of data that met the inclusion criteria. In the case of studies that
reported high school GPA for an undergraduate sample, we only included the
university grades, if reported, and we deemed the high school grades ineligible. This
is because the high school grades of groups of undergraduates do not come from
the same cohort—they represent a subsample of students from disparate high
schools, and only those students who performed well enough to attend university.

When we identified studies that reported data from the same large database, we
only included the study with the largest sample size, and excluded the rest to avoid
pseudo-replication. The list of excluded studies, with reasons for exclusion, is
presented in Supplementary Data 2.

Data extraction and coding. From the original papers, we extracted the sample
sizes, means, and standard deviations for male and female academic grades. For the
studies used by Voyer and Voyer®, we attempted to contact authors if any of these
data were missing. All contacted authors were also asked to provide any additional
data (published or unpublished) they might have available. If we received no
response after 1 month, we sent a follow-up email. Only unstandardised grade data
was collected. When presented data was standardised, we contacted authors to
request the corresponding unstandardised values. For the studies published after
August 2011, we only contacted authors if variance data was missing. In total, data
from authors was acquired for 15 studies, including two unpublished studies.
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Moderator variables. In addition to the descriptive statistics for grades of males
and females, we extracted a number of moderator variables, all of which are pre-
sented in Supplementary Table 1. We generally followed the variables used by
Voyer and Voyer® (e.g. racial composition), as well as recording additional
information (e.g. age of students). An analysis of the moderating effect of racial
composition on the gender gap in school grades is presented in the Supplementary
Note 1 and Supplementary Tables 1, 3. Continuous moderators were scaled and
centred (resulting in mean of 0, and standard deviation of 1) prior to the analyses.
We used multiple imputations to fill in missing values of study year and students’
mean age (details in Supplementary Methods).

Effect sizes. Using standardised effect sizes allowed us to combine original data
collected on different scales (grades were recorded on different scales among
included studies). To test for differences in mean grades between genders, we used
the natural logarithm response ratio (hereafter referred to as InRR), and its cor-
responding sampling error variance s,pz*.

%
InRR = In( =L 1
" n("_cm>, ()

s st 2

nex?’

where:

X; and X, = the mean grade of female and male students, respectively,

s% and s? = the variance in grades of female and male students, respectively,

fm and ng = the number of male and female students in each sample,
respectively.

Positive values of InRR imply greater mean grades for girls.

We extended the literature search in Voyer and Voyer® by 5 years, and our
analysis of mean grades differed from theirs in two ways: (1) we included only
studies where we could compare variances, and; (2) we used InRR instead of the
standardised mean difference in performance (SMD or Hedges g*%; see
Supplementary Equations 1-4). We chose to use InRR because, unlike SMD, it is
unaffected by differences in variance (standard deviation) between groups.
However, for comparison with Voyer’s® results, we have repeated the InRR analyses
using SMD as the effect size. The results for both InRR and SMD analyses—which
are very similar to each other—are presented in the Supplementary Figure 4, and
Supplementary Tables 2-4, 6, 8, 12, 13, 16, 19, 22, 25.

To assess differences in variance of grades of boys and girls, we used the natural
logarithm coefficient of variation ratio (InCVR) and its associated sampling error
variance %,y

CV, 1 1
InCVR =In{ —L) + —+ 7 (3)
CVp, 2(ng —1)  2(ny, —1)
SlanVR - n:"_;zm + Z(Vllj—l) - zplnx JIns,,
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where:

CV; and CV,, = the coefficient of variation for males and females (£).

Pincinse 04 Pix, 1, = the correlations between the logged means and
standard deviations of the male and female students, respectively.

All other notation is described above. Positive values of InCVR imply greater
variance in girls’ grades relative to boys’ grades. By dividing the female and male
standard deviations by their respective means, we controlled for the effect of a
proportional relationship (the mean-variance relationship) between the standard
deviation and the mean. To test how the variance in grades has changed over time,
we also computed the natural logarithm of the coefficient of variation (InCV) for

boys and girls separately, and its associated sampling error variance>:
s 1
InCV = In() + .
n n{= + =1 (5)
s 1
Sincy = e a1 2Pinsins (©)

All notation as described above. For the same mean, a more negative value of
InCV implies a smaller variance.

Statistical analyses. We performed our main analyses on InCVR and InRR, and
their associated error terms, using the rma.mv function in the R (v.3.4.2) package
metafor v.2.0-0%8. One-third of effect sizes were not independent, because they

came from the same study and/or the same cohort of students. We therefore
included cohort ID and comparison ID as random effects in each model (the levels
of study ID overlapped too much with cohort ID to model both levels simulta-
neously; e.g. in the school data, 120 studies and 141 cohorts, respectively). We also
modelled covariance between effect sizes, assuming that effect sizes from the same
cohort had 0.5 correlations between grades in different subjects (recommended in
ref. %) because sampling error variances among these effect sizes based on the same
cohort are likely to be correlated. We added this covariance matrix as our sampling
error variance matrix (V argument in the rma.mv function). In addition, to account
for the two main types of non-independence in our data (hierarchical/nested and
correlation/covariance structures), we used the robust function within the metafor
package to generate fixed effects estimates and confidence intervals, based on
robust variance estimation, from each rma.mv model. To test for the overall effect
of gender on mean and variance in school grades, we constructed meta-analytical
models with no fixed effects (i.e. meta-analytic model or intercept-only model). We
tested whether the results were significantly different between school and university
by including the ‘school or university’ categorical moderator in a meta-regression
model on the whole dataset. We then ran separate meta-analytical models on the
school and university data subsets to quantify respective heterogeneities (Supple-
mentary Methods). To test whether the gender gap in school grades varied between
subjects, we included subject type (STEM, non-STEM, Global, Other/NR) as a fixed
effect in meta-regression analyses. To test whether the gender difference in school
grades has changed over historical time, or with student age, we included either
study year or average student age as a fixed effect. To test whether the variance of
either males or females has changed over historical time, or with student age, we
used InCV as the response variable, and the fixed effects of sex and study year, or
sex and age, and their interactions. Point estimates from all statistical models were
considered statistically significant when their CI did not span zero.

Robustness of results. There is a possibility of a bias in our results due to over-
reporting of positive findings in published studies, so we tested our data for
publication bias using multilevel-model versions of funnel plots and Egger’s
regression®>>1. We also performed alternative analyses of key components of our
study to test whether our conclusions are robust. Overlaps of grade distributions
were inferred using simulation methods. Details and results of these analyses are
presented in Supplementary Methods and Supplementary Tables 15-18, 20-23.

Data availability

All data, code, and models that were used to generate results text, figures, and tables in
the main text and supplementary information are available to download from dedicated
repositories on the Open Science Framework>2>3.
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