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Natural selection operates via fitness components like mating success, fecundity, and longevity, which can be understood as

intermediaries in the causal process linking traits to fitness. In particular, sexual selection occurs when traits influence mating or

fertilization success, which, in turn, influences fitness. We show how to quantify both these steps in a single path analysis, leading

to better estimates of the strength of sexual selection. Our model controls for confounding variables, such as body size or condition,

when estimating the relationship between mating and reproductive success. Correspondingly, we define the Bateman gradient

and the Jones index using partial rather than simple regressions, which better captures how they are commonly interpreted. The

model can be applied both to purely phenotypic data and to quantitative genetic parameters estimated using information on

relatedness. The phenotypic approach breaks down selection differentials into a sexually selected and a “remainder” component.

The quantitative genetic approach decomposes the estimated evolutionary response to selection analogously. We apply our

method to analyze sexual selection in male dusky pipefish, Syngnathus floridae, and in two simulated datasets. We highlight

conceptual and statistical limitations of previous path-based approaches, which can lead to substantial misestimation of sexual

selection.

KEY WORDS: Animal model, opportunity for sexual selection, quantitative genetics, Robertson’s secondary theorem of selection,

selection gradient, structural equation modeling.

We often care about the exact route by which traits affect fitness,

and not just the strength of these effects. For instance, large males

may be fitter, but is this because they live longer, mate more of-

ten, fare better in sperm competition, or are multiple pathways

involved? To answer this type of question, we must consider se-

lection as a multistep causal process (Kingsolver and Schemske

1991; Scheiner et al. 2000; Frank 2013; Morrissey 2014). In-

dividual components of this process can be estimated and then

integrated into an overall measure of “selection via” any causal

intermediary of interest.

Here, we apply this philosophy to the quantification of sexual

selection. Sexual selection arises via competition for mates or fer-

tilization opportunities (Shuker 2010). It can be conceptualized as

a two-step causal process (Fig. 1): phenotypic traits affect mating

or fertilization success (Step 1); and mating or fertilization suc-

cess affects reproductive success, defined as the total production

of offspring over a given period (Step 2). Recent reviews have

championed a unified view of this process (Jones 2009; Henshaw

et al. 2016; Anthes et al. 2017). However, most empirical work

still considers each step in isolation, usually via particular met-

rics such as the opportunity for sexual selection, an upper bound

on Step 1, or the Bateman gradient, an estimate of Step 2 (see

Table 1 for a glossary of terms). This has contributed to

widespread controversy about how to define and quantify sex-

ual selection (Klug et al. 2010; Krakauer et al. 2011; Fitze and Le

Galliard 2011; Jennions et al. 2012; Mobley 2014).

Here, we formalize the causal structure of sexual selection

using path analysis, an extension of regression modeling that

accommodates complex causal patterns (Wright 1934; Loehlin

2004; Shipley 2016). Our approach quantifies the relationships

between measured traits, mating success, and reproductive suc-

cess in a single framework. It also allows us to correct for the
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Figure 1. Path diagram for the causal relationships between traits

(or environmental effects) Z1, . . . , Zn, mating success M, and re-

productive success R. Single-headed arrows indicate potential

causal effects that are included in the model. Double-headed ar-

rows indicate covariances between pairs of traits Zi and Z j , which

are not analyzed causally. Path coefficients from A to B are writ-

ten βB A and covariances are written σAB . The pathway of direct

sexual selection on Z1 is shown in red, with strength estimated as

σ2
1βM1βR M, where σ2

1 is the variance in Z1.

potentially confounding effects of environmental variation. The

strength of sexual selection acting on a trait can then be estimated

by combining both steps in the causal pathway (Jones 2009). We

focus on selection via mating success (often called “pre-mating”

or “pre-copulatory” sexual selection). For brevity, we use “sexual

selection” as a shorthand for “premating sexual selection” unless

otherwise stated. However, our approach applies equally well to

selection via fertilization success, or indeed–thinking beyond sex-

ual selection–via any other fitness component, with only a change

in terminology (e.g., replace “mating success” with “fertilization

success”).

SEXUAL SELECTION METRICS: WHAT’S WRONG WITH

THE STATUS QUO?

Most popular indices of sexual selection capture only one step in

the causal pathway linking a trait to reproductive success (Jones

2009; Henshaw et al. 2016; Anthes et al. 2017; summarized in

Table 1). Mating differentials and mating gradients tell us how

traits covary with mating success (Step 1 above) but not how,

or even whether, this translates into differences in reproductive

success or, ultimately, fitness (Lorch 2005). The same limitation

holds for the opportunity for sexual selection Is (i.e., the coef-

ficient of variation in mating success), which provides an upper

bound on the mating differential for a standardized trait (Wade

and Arnold 1980; Jones 2009). In contrast, the Bateman gradient

βss (Arnold and Duvall 1994) quantifies the relationship between

mating and reproductive success (Step 2), but says nothing about

the determinants of mating success. The Bateman gradient also

fails to account for confounding variables (e.g., body size or con-

dition) that may directly influence both mating and reproductive

success (Gerlach et al. 2012; Collet et al. 2012, 2014; Janicke

et al. 2016; Anthes et al. 2017).

These various metrics are not alternative ways to measure

a single entity (“sexual selection”). Rather, they are estimates

or upper bounds of distinct components of the sexual selection

process. The overall relationship between traits and reproductive

success can be quantified using selection differentials (defined

here as the covariance between a trait and relative reproductive

success) or selection gradients (partial regression coefficients of

relative reproductive success on trait values: Lande and Arnold

1983; Henshaw and Zemel 2017). However, these metrics include

selection from all sources, both sexual and nonsexual, and con-

sequently do not illuminate the contribution of sexual selection

to overall selection on traits. None of the above metrics is an ap-

propriate stand-alone measure of the strength of sexual selection.

Jones (2009) recognized the need for metrics that integrate

both steps in the sexual selection pathway, following on from

previous path-based models of sexual selection (Arnold 1994;

Arnold and Duvall 1994; Conner 1996). He defined the strength

of premating sexual selection on a trait as the product mβss of

the mating differential m and the Bateman gradient βss (Table 1).

The Jones index s ′
max = βss

√
Is provides an upper bound on mβss

for any variance-standardized trait. In a recent simulation study,

the Jones index outperformed all other non-trait-based indices in

predicting the strength of sexual selection on a trait (Henshaw

et al. 2016). Nonetheless, like the Bateman gradient, Jones’

metrics are vulnerable to confounding factors when estimating

the relationship between mating and reproductive success.

Anthes et al. (2017) illustrated the pitfalls of current metrics

with a simple example concerning sexual selection on females.

Imagine a species where female fecundity increases with size,

and where males have consequently evolved to prefer mating

with larger females. Females need sperm from at least one male to

fertilize their eggs, but matings are easily obtained and additional

matings do not influence female reproductive success. In this

scenario, there may be positive covariances between (i) female

size and reproductive success; (ii) female size and mating success,

due to males’ mating preferences; and (iii) female mating and re-

productive success, as both are influenced by female size. Mating

and selection differentials (m and s) on female size will conse-

quently be positive, as will the Bateman gradient βss and Jones

index s ′
max. In fact, all currently used metrics will indicate positive

sexual selection, even though there is no actual sexual selection

on female size. Larger females have both more mates and more

offspring, but the beneficial effect of size is not because higher

mating success increases reproductive success. Similarly, we

can imagine scenarios when favorable environmental conditions

elevate both mating and reproductive success, but mating success

does not directly influence reproductive success. These examples

show how careful we need to be in defining and quantifying

sexual selection to avoid drawing nonsensical conclusions.
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Table 1. Glossary of terms. Note that we treat reproductive success as a proxy for fitness.

Phenotypic variance-covariance matrix (P) Matrix of phenotypic variances and covariances for a set of n
traits (P Z ) or n traits and mating success (P Z M )

Genetic variance-covariance matrix (G) Matrix of additive genetic variances and covariances for a set
of n traits (GZ ) or n traits and mating success (GZ M )

Selection differential (s) Covariance between a trait (or set of traits) and reproductive
success; also equals the difference in mean traits values
between all individuals and the parents of offspring, with the
latter weighted by the number of offspring per parent (Lande
and Arnold 1983)

Selection gradient Simple or partial regression coefficient of reproductive success
on a trait (Lande and Arnold 1983)

Mating differential (m) Covariance between a trait (or set of traits) and mating success
(Jones 2009)

Mating gradient Simple or partial regression coefficient of mating success on a
trait (Jones 2009)

Path coefficient (βB A) Estimate of the direct causal effect of one variable A on
another variable B

Extended selection gradient (η) Total effect of a trait on reproductive success via any causal
pathway (Morrissey 2014)

Opportunity for sexual selection (Is) Variance in relative mating success or, equivalently, the
coefficient of variation in absolute mating success (Wade
and Arnold 1980; Jones 2009)

Simple Bateman gradient (βss) Simple regression coefficient of reproductive success on
mating success (Arnold and Duvall 1994)

Partial Bateman gradient (βRM ) Partial regression coefficient of reproductive success on mating
success, controlling for other measured traits or
environments

Simple Jones index ( s ′
max = βss

√
Is) Estimated maximum strength of premating sexual selection on

a trait (Jones 2009)
Partial Jones index ( x ′

max = βRM
√

Is) Estimated maximum strength of premating sexual selection on
a trait, controlling for other measured traits or environmental
variables that might confound the relationship between
mating and reproductive success (eq. (11))

Sexual selection (x) Estimated component of the selection differential on a trait that
is due to sexual selection (eq. (7))

Remaining selection (r ) Estimated component of the selection differential on a trait that
is not due to sexual selection (s = x + r ; eq. (8))

Predicted evolutionary response to selection (sg) Additive genetic covariance between a trait and reproductive
success; also equals the estimated difference in mean
breeding values between all individuals and the parents of
offspring, with the latter weighted by the number of
offspring per parent (Robertson 1966, 1968)

Predicted response to sexual selection (xg) Estimated component of the evolutionary response to selection
that is due to sexual selection (eq. (14))

Predicted response to remaining selection (rg) Estimated component of the evolutionary response to selection
that is not due to sexual selection (eq. (14))

OUR APPROACH

Our path-analytic model avoids these problems by estimating both

steps in the sexual selection pathway simultaneously, while con-

trolling for likely confounding variables. In particular, it controls

for all measured traits (e.g., body size) and environments (e.g.,

local resource availability) when estimating the Bateman gradi-

ent (Collet et al. 2012, 2014). We are not the first to apply a

path-based method to quantifying selection (e.g., Kingsolver and

Schemske 1991; Scheiner et al. 2000, 2002; Morrissey 2014), nor

to the particular case of sexual selection (Arnold 1994; Arnold and
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Duvall 1994; Conner 1996). However, our approach avoids key

conceptual and statistical problems associated with these previ-

ous approaches (see Comparisons to existing path-based models

of selection).

Our method can be applied both to purely phenotypic data and

to quantitative genetic parameters estimated using information

on the relatedness between individuals (Lynch and Walsh 1998;

Kruuk 2004; Wilson et al. 2010). As input it requires only the co-

variances (phenotypic or additive genetic) between all measured

variables–at minimum, this means one needs to quantify mating

success, reproductive success, and at least one trait. The pheno-

typic model decomposes the selection differential into compo-

nents due to premating sexual selection (defined here as selection

via mating success) and all remaining selection (which encom-

passes both nonsexual selection and any sexual selection that does

not act via mating success, including postmating sexual selection

and selection for mate quality or differential allocation: Jones

2009; Fitzpatrick 2015; Haaland et al. 2017). The quantitative

genetic model decomposes the predicted evolutionary response

to selection analogously.

Methods: Phenotypic Path Model
We model the relationships among traits Z1, . . . , Zn , mating suc-

cess M , and reproductive success R, according to the path diagram

in Figure 1. We assume that traits can directly influence both mat-

ing and reproductive success, and that mating success can affect

reproductive success. We aim to estimate the strength of these

causal relationships. Environmental effects (e.g., local food avail-

ability) can be included as “traits” with no change to the model

structure (see Statistical considerations). We initially present the

model in its phenotypic form, but later show how it can be adapted

to a quantitative genetic framework to decompose the predicted

evolutionary response to selection.

COVARIANCES, PATH COEFFICIENTS, AND

STANDARDIZATION OF TRAITS

Like all path analyses, our approach involves two types of statistic

that are important to distinguish: covariances and path coefficients

(Loehlin 2004; Kline 2016). Covariances are statistical associa-

tions between variables that can potentially arise from multiple

alternative causal patterns (i.e., one variable influences the other

and/or both are influenced by a third variable). Covariances be-

tween trait values and mating success are called mating differ-

entials, and those between traits and reproductive success are

selection differentials (Table 1). The selection differential is of

particular interest because it equals the difference in mean trait

values between all individuals and the parents of offspring, with

the latter weighted by the number of offspring per parent (Lande

1979; Jones 2009; Henshaw and Zemel 2017).

Path coefficients are estimates of the strength of the causal in-

fluence of one variable on another, assuming that the chosen path

model is correct (see Statistical considerations). Mating gradi-

ents and selection gradients can be thought of as path coefficients

arising from the simple path model that underlies multiple re-

gressions: a dependent variable (mating or reproductive success)

is influenced by several independent variables (traits or environ-

mental variables).

We write mi = cov(M, Zi ) and si = cov(R, Zi ) for the

mating and selection differentials on the i th trait, respectively.

The selection differential on mating success is sM = cov(R, M).

Column vectors of mating and selection differentials are written

m = (m1, . . . , mn)T and s = (s1, . . . , sn, sM )T . Note that the

vector of selection differentials includes sM (i.e., mating success

is treated as the (n + 1)th trait).

The phenotypic variance-covariance matrix of the n traits is

denoted P Z . It is useful to also consider an enlarged phenotypic

variance-covariance matrix P Z M that includes mating success as

a trait. The relationship between P Z and P Z M is:

P Z M =
[

P Z m
mT σ2

M

]
(1)

We write βMi for the path coefficients from the i th trait to

mating success, βRi for those from the i th trait to reproductive

success, and βRM for that from mating success to reproductive

success (Fig. 1). Column vectors of path coefficients leading to

mating and reproductive success are written respectively as βM =
( βM1, . . . , βMn )T and βR = ( βR1, . . . , βRn, βRM )T .

Our analysis does not depend on how traits are standard-

ized, except where noted. For many applications, it is helpful to

variance-standardize trait values (i.e., first deduct the mean from

all trait values, and then divide by the standard deviation). Selec-

tion differentials are then measured in units of phenotypic stan-

dard deviations (Lande and Arnold 1983). Mean-standardization

of traits (i.e., dividing by the mean) may be more appropriate

for some purposes (Houle 1992; Hereford et al. 2004; Houle

et al. 2011). Relative (i.e., mean-standardized) reproductive suc-

cess should always be used to ensure compatibility with quantita-

tive genetic theory, and we use relative mating success for similar

reasons (Jones 2009).

SOLVING FOR THE PATH COEFFICIENTS

Following Wright’s rules (Wright 1934; Loehlin 2004), the path

coefficients in Figure 1 should obey the following equations

(where we write σi j = cov(Zi , Z j )):

mi =
n∑

j=1

σi jβM j (2)
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si =
n∑

j=1

σi j
(
βRMβM j + βR j

)
(3)

sM = σ2
MβRM +

n∑
i = 1

βRi

n∑
j = 1

σi jβM j (4)

This is a system of 2n + 1 equations with the same number of

path coefficients as unknowns (remember that n is the number of

traits). We should consequently expect an exact solution (in path-

analytic terms, the system is “just-determined”: Loehlin 2004).

Equation (2) can be written in matrix form as:

m = P ZβM (5)

Similarly, by substituting (2) into (4) and using the definition

of P Z M from equation (1), we can summarize equations (3) and

(4) as a single matrix equation:

s = P Z MβR (6)

By inverting these two matrix equations, we obtain simple

expressions for all path coefficients, namely βM = P−1
Z m and

βR = P−1
Z M s. These results are intuitive. The path coefficients βM

are equal to the partial regression coefficients of mating success on

the n traits under ordinary least squares regression (i.e., the mating

gradients). Similarly, βR equals the partial regression coefficients

of reproductive success on the n traits and mating success (i.e.,

the selection gradients).

A SIMPLE MEASURE OF SEXUAL SELECTION

We can now partition total selection on the i th trait into sexual

selection and remaining selection: si = xi + ri . Sexual selection

(used here as a shorthand for “premating sexual selection”) is the

relationship between a trait and reproductive success via mating

success. It consists of all pathways from the trait Zi to reproductive

success R that pass through mating success M (Fig. 1). It is given

by:

xi = βRM

⎛
⎝ n∑

j = 1

σi jβM j

⎞
⎠ = βRM mi (7)

Remaining selection consists of all pathways from Zi to R

that do not pass through M , and is given by:

ri =
n∑

j=1

σi jβR j (8)

More succinctly, the vector sZ = (s1, . . . , sn)T of selection

differentials on the n traits, excluding mating success, can be

expressed as:

sZ = x + r = P Z
(
βRMβM + βRZ

)
, (9)

where βRZ = (βR1, . . . , βRn)T .

Morrissey (2014) refers to the total effect of a trait on fitness

as the extended selection gradient η (see Comparisons to existing

path-based models of selection). For our model (Fig. 1), the vector

of extended selection gradients on all n traits is given by η =
βRMβM + βRZ . Equivalently, η is the vector of selection gradients

obtained from the multiple regression of reproductive success on

the n traits (not including mating success). “Direct” selection on

the i th trait is given by σ2
i ηi , consistent with the Lande-Arnold

framework (Lande and Arnold 1983; Scheiner et al. 2000).

Sexual selection x and remaining selection r take on differ-

ent meanings depending on how fitness components are defined

and measured (Evans and Garcia-Gonzalez 2016; Anthes et al.

2017). For instance, studies of premating sexual selection usually

define an individual’s mating success operationally as its number

of matings or mates. If mating success is taken as the intermediate

variable in our model, then “sexual selection” x is strictly con-

fined to selection to increase this number. “Remaining selection”

r covers everything else, including both nonsexual selection, and

any type of sexual selection that does not act via mating suc-

cess, such as sperm competition, cryptic choice, and, more subtly,

selection for mate quality or differential allocation (Jones 2009;

Fitzpatrick 2015; Haaland et al. 2017). If other variables such as

paternity share or fertilization success are substituted for mating

success, then the interpretation changes accordingly. It is impor-

tant not to take the labels “sexual” and “remaining” too literally,

as study-specific definitions of fitness components determine ex-

actly which processes these pathways include.

“PARTIAL” DEFINITIONS OF THE BATEMAN

GRADIENT AND THE JONES INDEX

The path coefficient βRM estimates the causal effect of mating

success on reproductive success. It is analogous to the Bateman

gradient βss , which is the slope of the simple linear regression

of R on M (Arnold and Duvall 1994; Jones 2009). Unlike the

Bateman gradient, however, βRM controls for spurious relation-

ships between mating and reproductive success that arise from

any common causes (i.e., traits or environments) that are included

in the analyses (Collet et al. 2012, 2014). We consequently refer

to βRM as a partial Bateman gradient.

If all traits affecting mating success are uncorrelated with

those affecting reproductive success (i.e., if σi j = 0 whenever

both βMi and βR j are nonzero) then equation (4) gives us:

βRM = sM

σ2
M

= βss (10)

In other words, if mating and reproductive success are in-

fluenced by two independent sets of traits, then the partial

and simple Bateman gradients are equal. Total sexual selec-

tion on the i th trait is then xi = miβss , which is the same
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definition as used by Jones (2009) (see Introduction). For

variance-standardized traits, this quantity is bounded in magni-

tude by the Jones index s ′
max = βss

√
Is , where Is is the oppor-

tunity for sexual selection (Wade and Arnold 1980; Jones 2009;

Henshaw et al. 2016; see Table 1). The Jones index can also

be thought of as a Bateman gradient calculated using variance-

standardized, rather than mean-standardized, mating success (Mc-

Donald and Pizzari 2018). If mating and reproductive success are

determined by independent sets of traits, then “remaining” selec-

tion can be expressed as ri = cov(Zi , ε), where ε is the residual

from the simple regression of reproductive success on mating

success (see Jones (2009) for derivation).

When either a particular trait, or a pair of correlated traits, in-

fluences both mating and reproductive success directly, the simple

and partial Bateman gradients may differ. In this case, the simple

Bateman gradient reflects the overall association between mating

and reproductive success, whereas the partial Bateman gradient

controls for measured confounding factors that influence both

mating and reproductive success. Sexual selection on the i th trait

can then be bounded as follows:

|xi | ≤ |βRM |
√

σ2
i Is (11)

For variance-standardized traits, the strength of premating

sexual selection is thus bounded in magnitude by the partial Jones

index x ′
max = βRM

√
Is . This estimated bound is informative even

for traits that are not included in the analysis. It is unbiased only

if the analysis includes all factors that confound the relationship

between mating and reproductive success. The simple Jones index

s ′
max is generally a less accurate bound because it does not control

for any confounding factors.

Worked Examples
To illustrate the use of our method we provide two worked ex-

amples, where we analyse sexual selection on body size in (1) a

simulated dataset based on the example of Anthes et al. (2017)

given in the Introduction, and (2) an empirical dataset on male

dusky pipefish, Syngnathus floridae. Datasets and R code for both

examples are provided at https://doi.org/10.5061/dryad.1fp7830.

FAT, SEXY, AND FECUND

First, we modeled the example of misidentified sexual selection

on females from Anthes et al. (2017) (see Introduction). We also

compared our model’s estimates of sexual selection to the path-

based models of Arnold (1994), Conner (1996), and Jones (2009)

(for full details of these models see Comparisons to existing

path-based models of selection). Two of these models (Arnold

1994; Conner 1996) incorporate a derived variable, “fecundity

per mate,” that is not included in our model (see Figs. 2 and 3).

Figure 2. Path diagram for the two worked examples, “Fat, sexy,

and fecund” and “Size selection in male pipefish,” shown with

body size or length Z , mating success M, and reproductive success

R. Path coefficients from A to B are written βB A.

Figure 3. Path diagram for the causal relationships between a

single trait Z , mating success M, fecundity per mate F , and re-

productive success R, as used in the models of Arnold (1994) and

Conner (1996). The coefficients βMZ and βF Z are simple regression

coefficients of M on Z and F on Z, respectively. The coefficients

βR M and βR F are either partial regression coefficients in the mul-

tiple regression of R on both M and F (Arnold 1994) or simple

regression coefficients in separate regressions of R on M and R

on F , respectively (Conner 1996). The pathway of direct sexual se-

lection on Z is shown in red, with strength estimated as σ2
ZβMZβR M.

Fecundity per mate F is defined as an individual’s reproductive

success divided by its mating success. In this worked example,

mating success is always at least one, so there is no issue of di-

vision by zero; in general, however, the definition of fecundity

per mate is problematic (see Comparisons to existing path-based

models of selection).

We simulated female body size Z , mating success M and

reproductive success R in a sample of 1000 females (details in

Supporting Information). We assumed that all females find at least

one mate, and that mating success increases roughly linearly with

body size. Reproductive success also increases linearly with size,

but is not directly influenced by mating success.

Although there was strong selection on body size ( sZ =
0.30), our model correctly attributed this to the direct effect of

body size on reproductive success ( rZ = 0.29), rather than to

premating sexual selection (xZ = 0.00: Table 2). In contrast, the

alternative models all indicated substantial sexual selection (i.e.,

selection via mating success), even though none is acting. They
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Table 2. Results of the worked example “Fat, sexy, and fecund,” showing how various modeling approaches estimate sexual versus

remaining selection on body size Z , based on its relationships with mating success M, fecundity per mate F , and reproductive success R.

Parameter Model Formula Raw value Relativized value

Mating gradient on Z All βM Z 1.73 0.33
Fecundity-per-mate gradient on Z A, C βF Z −0.30 −0.12
Selection gradient on Z (controlling for
M)

Ours βRZ = βRZ |M 3.00 0.29

Simple Bateman gradient C, J βss = βRM|∅ 0.80 0.40
Partial Bateman gradient Ours βRM = βRM|Z 0.00 0.00
Selection gradient on M (controlling for
F)

A βRM|F 1.39 0.70

Selection gradient on F (no covariates) C βRF |∅ 0.36 0.09
Selection gradient on F (controlling for
M)

A βRF |M 1.30 0.33

Sexual selection A σ2
ZβRM|FβM Z 2.40 0.24

C, J σ2
ZβssβM Z 1.38 0.14

Ours xZ = σ2
ZβRMβM Z 0.00 0.00

Remaining selection A σ2
ZβRF |MβF Z −0.39 −0.04

C σ2
ZβRF |∅βF Z −0.11 −0.01

J cov(Z , ε) 1.62 0.16
Ours rZ = σ2

ZβRZ 3.00 0.29
Total selection (selection differential) All sZ = σZ R = xZ + rZ 3.00 0.30

We present parameter estimates from analyses of raw data (“Raw value”) and also from analyses where F , M, and R were mean-standardized (“Relativized

value”). In both cases, body size is standardized so that σ2
Z = 1. We write βAB|C D for the partial regression coefficient of A on B with additional covariates C

and D (i.e., based on the regression A ∼ B + C + D). The notation βAB|∅ explicitly indicates that there are no covariates (i.e., the simple regression coefficient

of A on B). The residual in the simple regression of R on M is denoted ε (Jones 2009). Models are abbreviated as: A = Arnold (1994); C = Conner (1996);

J = Jones (2009); and Ours = our model (see Comparisons to existing path-based models of selection). All nonzero parameters values are statistically

significant (P < 0.05).

also drastically misestimated the strength of remaining selection

on body size (Table 2).

The failure of the alternative models has two main causes.

First, they overestimate the causal effect of mating success on

reproductive success by failing to control for body size. A naive

interpretation of the simple Bateman gradient would suggest that

each additional mating partner results in 0.8 additional offspring

on average (unstandardized value of the simple Bateman gradient

βss = 0.80 : Table 2). In contrast, our model correctly estimates

that there is no causal effect of mating success on reproductive

success (partial Bateman gradient βRM = 0.00). Second, if repro-

ductive success is independent of mating success M , then fecun-

dity per mate F is proportional to 1/M for any given female. The

models of Arnold (1994) and Conner (1996) include fecundity

per mate as a variable, but fail to account for this dependence (see

Comparisons to existing path-based models of selection). Note

that these models would still misestimate the strength of sexual

selection even if selection via both M and F were classified as

“sexual selection” (Table 2).

SIZE SELECTION IN MALE PIPEFISH

For our second example, we analyzed sexual selection in dusky

pipefish (Syngnathus floridae), a sex-role reversed species, using

both our model and that of Jones (2009). Male dusky pipefish

brood embryos in a specialised pouch, which may contain off-

spring from multiple females simultaneously. Mate choice is

largely driven by females; even so, our focus here is on sexual

selection in males.

Mobley and colleagues collected pregnant male dusky

pipefish across five sites on the Eastern coast of North Amer-

ica (Mobley and Jones 2007, 2009, 2013; Mobley et al. 2014).

They measured body length (tip of snout to base of caudal fin) and

dissected brood pouches to extract developing embryos. Parent-

age analysis was performed on a subset of 42 embryos from each

male (details in Mobley and Jones 2007). A male’s reproductive

success was defined as the total number of embryos in his brood

pouch. Mating success was estimated as the number of unique

mothers identified in the subsample of 42 embryos. The resulting

datasets contain information on male body length, mating suc-

cess, and reproductive success across six samples (corresponding

to five sites, one of which was sampled in two different years).

Here, we only consider data from pregnant males, which means

that the estimated Bateman gradients (whether simple or partial)

may not be reflective of the whole male population.

We compared our model’s estimates of sexual and remain-

ing selection on body length to those of Jones (2009), based
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Table 3. Results of the worked example “Size selection in male pipefish,” showing estimates of sexual and remaining selection on male

body length Z using our model and that of Jones (2009).

Site VA NC TB SJ TX1 TX3

Sample size 30 24 30 22 13 26
Mating gradient on male size βM Z 0.20∗ 0.14 0.22∗ 0.19∗ 0.12 0.02
Selection gradient on male size βRZ 0.25∗ 0.25∗ 0.12 0.13 0.35∗ 0.01
Simple Bateman gradient βss 0.47∗ 0.36 0.58∗ 0.33 1.02∗ 0.49∗

Partial Bateman gradient βRM −0.11 0.13 0.36 0.18 0.70∗ 0.47∗

Sexual selection Jones (2009) 0.10 0.05 0.12 0.06 0.12 0.01
Our model (x) −0.02 0.02 0.08 0.03 0.09 0.01

Remaining selection Jones (2009) 0.13 0.21∗ 0.07 0.10 0.31∗ 0.01
Our model (r ) 0.25∗ 0.25∗ 0.12 0.13 0.35∗ 0.01

Total selection (s) 0.23∗ 0.27∗ 0.20∗ 0.17 0.44∗ 0.02

Within each population, body length is variance-standardized, whereas mating and reproductive success are mean-standardized. Data originate from

Mobjack Bay, Virginia (VA); Morehead City, North Carolina (NC); Tampa Bay, Florida (TB); St. Joseph Bay, Florida (SJ); and Aransas Pass, Texas (TX1 and TX3,

representing two different years). For details of data collection see (Mobley and Jones 2007; 2009; 2013). Note that some values differ from those in the

original publications because we only used data for pregnant males.
∗
Statistically significant (P < 0.05).

on the path diagram in Figure 2. We first calculated variance-

standardized body length and relative (i.e., mean-standardized)

mating and reproductive success separately within each sample

(corresponding to an assumption of soft selection among sites: De

Lisle and Svensson 2017). Reproductive success increased with

male size in all six samples. Selection differentials on body length

ranged from 0.02 to 0.44 and were significant in four of the six

samples (Table 3).

Two non-mutually-exclusive mechanisms might explain the

greater success of larger males. First, larger males might be more

attractive to females, whose eggs are a limiting resource (sexual

selection). Second, larger males may have a greater capacity to

brood eggs (remaining selection). Our model suggests that both

mechanisms might operate in male dusky pipefish, but that sexual

selection is less important (Table 3). Our model produced consis-

tently smaller estimates of sexual selection and larger estimates

of remaining selection than Jones’ model (Wilcoxon signed-rank

test, P = 0.036). This is because Jones’ model did not control

for the confounding effect of body length when estimating the

relationship between mating and reproductive success. Crucially,

larger males had both more mates and more offspring, but the

effect of mate number on reproductive success was smaller than

a simple regression (i.e., the simple Bateman gradient) would

suggest.

Methods: Quantitative Genetic Path
Model
Until now we have only discussed sexual selection on phenotypes.

Our phenotypic model describes how realised trait values are

related to reproductive and mating success; for example which

phenotypes have higher reproductive success, and to what extent

can this be explained by differences in mating success? As

input, the model requires only the matrix of covariances among

measured traits, environmental effects, mating success, and

reproductive success. Equations (5) though (9) then allow the

selection differential on each trait to be split into components for

sexual and remaining selection.

However, our method can be extended to estimate the various

components of the sexual selection process at the genetic level.

Given detailed knowledge of relatedness among individuals (e.g.,

a pedigree, controlled breeding design, or high-density marker

data), one can estimate the additive genetic covariances among

measured variables (Lynch and Walsh 1998; Kruuk 2004; Wilson

et al. 2010). By Robertson’s secondary theorem of selection, the

predicted evolutionary response to selection (i.e., the estimated

difference in mean breeding values between all individuals and

parents of offspring) is equal to the additive genetic covariance

between a trait and fitness (Robertson 1966, 1968; Morrissey et al.

2010; Walsh and Lynch 2014). A quantitative genetic framing of

the path model (Fig. 1) allows the estimated response to selection

to be broken down along the proposed causal pathways (similarly,

Stinchcombe et al. (2014) and Kruuk et al. (2014) used multivari-

ate analyses to estimate genetic selection gradients). This allows

one to estimate the evolutionary responses to sexual and remaining

selection.

For the quantitative genetic model, the analogs of equations

(5) and (6) are:

mg = GZβMg (12)

sg = GZ MβRg (13)
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The genetic mating differential mg is a vector of estimated

additive genetic covariances between the n traits and mating suc-

cess. The genetic selection differential sg consists of the additive

genetic covariances between the n + 1 traits (including mating

success) and reproductive success (Stinchcombe et al. 2014). It es-

timates the evolutionary response to selection for these traits. The

matrices GZ and GZ M are additive genetic variance-covariance

matrices, excluding and including mating success, respectively.

The genetic path coefficients βMg and βRg are analogous to their

phenotypic counterparts, except that they describe causal relation-

ships among breeding values, rather than realized trait values.

The estimated response to selection can be broken down into

sexual and remaining components using the analog of equation

(9):

sZg = xg + rg = GZ
(
βRMgβMg + βRZg

)
(14)

The quantitative genetic form of our model describes how

breeding values for traits and reproductive success covary, and to

what extent any association can be explained by genetic covari-

ance with mating success. A worked example is provided in the

Supporting Information.

Statistical Considerations
CAUSALITY, HIDDEN VARIABLES, AND CHOICE OF

PATH MODELS

The path coefficients in our model are interpreted as estimates

of the strength of causal effects. This interpretation is only fully

valid if the path model correctly represents the underlying causal-

ity, meaning that (i) if A influences B then there is an arrow from

A to B in the path diagram, and (ii) there are no “hidden vari-

ables” that independently influence two or more path variables,

but are absent from the model (Loehlin 2004). For instance, it

is assumed that mating success influences reproductive success,

but not the other way around. This assumption will be violated,

for example, in fish species where females prefer to mate with

males tending larger nests, leading to a “backward” causal effect

of male reproductive success on male mating success (Wisenden

1999). Mating and reproductive success can also directly affect

phenotypic traits, such as when body condition deteriorates due to

breeding (Milenkaya et al. 2013). Some of these backward causal

effects can, however, be ameliorated by careful choice of variables

(e.g., measure body condition at the start of the breeding season).

The assumption that there are no hidden variables is more

problematic, as is well known from phenotypic studies of selec-

tion (Mitchell-Olds and Shaw 1987; Rausher 1992; Morrissey

et al. 2010; Walker 2014; Reed et al. 2016). Analyses will be

improved by including obvious confounders such as body size

or condition (Scheiner et al. 2002). Importantly, our quantitative

genetic approach is resistant to confounding by environmental

variables, as these will usually show no additive genetic vari-

ance. Although some relevant variables will always be missed,

our approach provides a better estimate of sexual selection than

simple regression-based methods, which also assume no hidden

variables. Ultimately, however, manipulative experiments are es-

sential to resolve causal patterns (see Concluding remarks).

In some cases, traits are only expressed in a subset of individ-

uals (e.g., breeding phenotypes are not expressed in individuals

that die as juveniles). Moorad and Wade (2013) show how to es-

timate selection in the presence of such “nonexistent” traits, and

their approach can be incorporated into our phenotypic model

without issue (note that mating and reproductive success may

be zero, but never “nonexistent”). For our quantitative genetic

model, this is not necessary, because breeding values for a trait

can be estimated even in individuals that do not express the trait

(Hadfield 2008). This means that additive genetic variances and

covariances can be estimated across all individuals, even those

that do not express all traits.

For well-studied species, researchers may have strong prior

hypotheses about the causal relationships among traits and fitness

components. The best a priori path model may then differ from

that in Figure 1 (e.g., by excluding some paths or by explicitly

modeling the internal causal structure among traits). Tailored path

models can lend considerable insight into the causes of selection

(e.g., Conner et al. 1996; Sheldon and Ellegren 1999; Latta and

McCain 2009; Dai and Galloway 2013).

The simple analytic equations that we present do not apply

to these alternative models, which can be fitted using dedicated

structural equation modeling (SEM) software (e.g., commercial

packages like Mplus and Stata, or the R package lavaan: Rosseel

2012). However, the broad conceptual points above still apply,

namely (1) that premating sexual selection should be quantified

using the causal pathways that pass via mating success to repro-

ductive success, and (2) that it is important to control for factors

that potentially confound the relationship between mating and

reproductive success.

MORE FLEXIBLE MODELS: GLMs, GLMMs, AND

PIECEWISE SEM

Standard path analyses share many assumptions with linear re-

gression. First, causal effects, represented by single-headed ar-

rows in path diagrams (e.g., Fig. 1), are assumed to be linear and

additive. In some cases, nonlinearity can be dealt with by trans-

forming variables. It is preferable not to transform reproductive

success, however, as this obscures connections between the path

model and broader evolutionary theory (Stanton and Thiede 2005:

see Comparisons to existing path-based models of selection).

Second, residuals are assumed to be normally distributed

and homoscedastic (see Estimating uncertainty and model fit).
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As mating and reproductive success are generally count variables

(e.g., number of mates or offspring), these assumptions might

be severely violated in practice. As a result, point estimation of

parameters will be inefficient, requiring larger sample sizes to

achieve the same error, and estimates of uncertainty may be bi-

ased (Finney and DiStefano 2006). Most dedicated SEM software

includes “robust” estimation procedures that help to correct for

nonnormality and heteroscedasticity (Finney and DiStefano 2006;

Rosseel 2012). Another solution is to estimate each step of the

sexual selection pathway using a more flexible model, such as a

generalized linear-mixed model (GLMM), to accommodate de-

partures from linearity and nonnormality. For instance, mating

and reproductive success can be modeled using Poisson or nega-

tive binomial distributions (Broquet et al. 2015; Martin et al. 2015;

Turnell and Shaw 2015; Worthington and Kelly 2016). Random

effects (e.g., year or location) can also be incorporated using a

GLMM (O’Hara 2009).

Traditional SEM has been slow to accommodate these more

flexible regression approaches because all parameters are es-

timated globally (although Mplus and Stata have “generalized

SEM” functions). In contrast, “piecewise” SEM estimates each

piece of the model locally (Lefcheck 2016; Shipley 2016). The R

package piecewiseSEM imports most mainstream regression tech-

niques into an SEM context, using familiar R syntax (Lefcheck

2016).

One disadvantage of more general modeling approaches is

that their parameters have no straightforward link to central con-

structs of evolutionary theory like the selection differential or

the predicted response to selection. In theory, such a link could

be forged by transforming statistics (e.g., selection differentials,

path coefficients) from the link scale to the data scale via inte-

gration (de Villemereuil et al. 2016), although such techniques

have not yet been developed for SEM. Study-specific decisions

on how to construct these models may also make it harder to

compare sexual selection among species or between the sexes, as

has been done with standard metrics of sexual selection (Janicke

et al. 2016; Janicke and Morrow 2018; Janicke et al. 2018). In

contrast, our method can be applied to any system, and requires

no more than the three variables needed to measure sexual selec-

tion on traits (i.e., trait values, mating or fertilization success, and

reproductive success). Our approach is consequently well-suited

for comparative analyses.

ESTIMATING UNCERTAINTY AND MODEL FIT

For the phenotypic model, point estimates of path coefficients

can be obtained by inverting equations (5) and (6), or by fit-

ting the associated regression models. Confidence intervals and

P-values for path coefficients can, in principle, be taken directly

from the fitted regressions. In practice, it is easier to use dedi-

cated SEM software (e.g., the R package lavaan: Rosseel 2012)

that can also provide uncertainty estimates for compound vari-

ables such as the total strength of sexual selection (see R code at

https://doi.org/10.5061/dryad.1fp7830). For models using piece-

wise SEM, uncertainties in compound variables can be estimated

using the Delta method (Lynch and Walsh 1998), but we do not

explore this approach in detail here. The explanatory power of

these models is best assessed by calculating the two R2 values for

the regressions of mating and reproductive success respectively

on their explanatory variables (Nakagawa and Schielzeth 2013).

For the quantitative genetic model, point estimates of path

coefficients can be obtained by inverting equations (12) and (13)

(see worked example in Supporting Information). Estimating un-

certainty is trickier, because it is important not to neglect the un-

certainty in additive genetic covariances arising from the mixed

model. This is currently best done by using a Bayesian frame-

work to estimate posterior distributions for the genetic variance-

covariance matrix (e.g., using the R package MCMCglmm:

Hadfield 2010) and thence for all other derived parameters (see

e.g., Stinchcombe et al. 2014; Kruuk et al. 2014). This approach

can also be used to estimate parameter uncertainty in purely phe-

notypic models.

Sample size requirements for path analysis depend on many

factors, including the complexity of the model, precision of mea-

surement, and the reasonableness of assumptions such as normal-

ity and linearity. As a rule-of-thumb, Jackson (2003) and Kline

(2016) recommend sample sizes of at least 10, or ideally 20, times

the number of model parameters, but certainly not less than 100.

For our phenotypic approach, there are 2n + 1 model parame-

ters, where n is the number of traits. Our model is very simple

by SEM standards, so in practice somewhat smaller sample sizes

may be adequate. The component equations (5) and (6) can also

be studied separately using sample sizes sufficient for multiple

regression. The quantitative genetic approach will require sub-

stantially larger sample sizes for precise estimates of the additive

genetic covariances among variables, the exact value of which

will depend on the relatedness structure, but would seem fool-

hardy to attempt without sample sizes in the several hundreds

(Lynch 1999).

In the SEM literature, goodness-of-fit is sometimes assessed

by how closely models reproduce the observed covariance matrix

among measured variables. Our model necessarily reproduces

this matrix perfectly (as it is “just determined”: Loehlin 2004),

and so most covariance-based measures of fit are uninformative.

Researchers who wish to change the path structure in Figure 1

may find these metrics useful, however (see e.g., Kline (2016)

for appropriate statistics). Model selection methods can also be

used to compare the path model in Figure 1 to alternatives (e.g.,

models with fewer arrows), although we suspect that evolutionary

biologists will rarely have the reasons, or the data, to do this

satisfactorily.
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Comparisons to Existing Path-Based
Models of Selection
COMPARISON OF PHENOTYPIC MODELS

We are not the first to propose a path-based model of sexual

selection, but our model avoids many previous conceptual and

statistical limitations. Here, we briefly outline the models of

Arnold (1994), Conner (1996), and Jones (2009) and highlight

their differences from our model. The models of Arnold (1994)

and Conner (1996) rely on expressing fitness as an exact prod-

uct of fitness components. In the current context, this means that

reproductive success R (in place of fitness) is expressed as mat-

ing success M times fecundity per mate F (Fig. 3). The mod-

els then contain two tiers of regression. First, each component

of reproductive success (i.e., M or F) is regressed on the mea-

sured traits, yielding gradients of the form βM Z or βF Z , where

Z is a trait. Second, reproductive success is regressed on its

components, using either a combined multiple regression over

all components (Arnold 1994) or separate simple regressions for

each component (see Conner 1996 for the advantages of sepa-

rate regressions). This yields gradients of the form βRM and βRF .

Direct selection on Z via either M or F is then calculated as

σ2
ZβM ZβRM or σ2

FβF ZβRF , respectively. Jones’ (2009) definition

of sexual selection mβss is equivalent to applying Conner’s model

to a single trait. However, Jones calculates remaining selection

by deducting his estimate of sexual selection from the selection

differential.

All three models differ from ours in one crucial respect: they

calculate the relationship between mating and reproductive suc-

cess either without controlling for other variables (Conner 1996;

Jones 2009) or controlling only for fecundity per mate (Arnold

1994). In contrast, our model estimates this relationship using a

partial Bateman gradient that controls for other measured traits,

and can also accommodate potentially relevant environmental ef-

fects. In addition, the models of Arnold and Conner assume that

mating success does not influence fecundity per mate. This as-

sumption will be violated whenever total fecundity does not in-

crease in proportion to mating success (i.e., for females of almost

all species and males of most species). For example, if total fe-

cundity is fixed, then fecundity per mate will be proportional to

1/M , but this dependence is not accounted for by Arnold (1994)

or Conner (1996).

Three additional technical issues affect previous path-based

approaches, although these issues do not apply to all models.

First, the derived variable “fecundity per mate” is not defined for

individuals that never mate. Moorad and Wade (2013) resolve the

problem of “nonexistent” values for regression-based models of

selection; their approach could likely be extended to the path-

analytic context. This issue does not arise under our approach,

however, because fecundity per mate is not included as a variable.

Second, Arnold (1994) and Conner (1996) do not estimate

gradients in a traditional path-analytic framework, but rather as

stacked regressions. Deviations from Wright’s path analysis rules

(Wright 1934; Loehlin 2004) are consequently not minimised in

any controlled way (unlike our model, those of Arnold and Conner

are underdetermined: Loehlin 2004). Consequently, these models

do not provide an additive (or even an “additive as possible”)

breakdown of the selection differential into sexual and remaining

components (see Table 2, where sexual and remaining selection

on body size do not add up to the selection differential). Jones’

model does not suffer from this limitation, because remaining

selection is defined explicitly to satisfy additivity.

Third, reproductive success is a multiplicative, rather than

additive, function of its components (i.e., R = M F). This rela-

tionship is exact and known a priori, so estimating it via multiple

regression, as Arnold does, merely creates an error-prone model

without adding explanatory power (Conner 1996). Arnold sug-

gests taking logarithms of reproductive success and its compo-

nents to meet the additivity assumption of linear regression, but,

even then, the regression remains uninformative.

These drawbacks of previous approaches can lead to substan-

tial misestimation of sexual selection, even in simple, biologically

plausible cases (see Worked examples and Table 2).

COMPARISON OF QUANTITATIVE GENETIC MODELS

Our quantitative genetic model extends the approach of Stinch-

combe et al. (2014), who provided genetic analogs of selection

gradients. It uses a similar methodology to Scheiner et al. (2002),

who applied path analysis to the means of full and half-sib fam-

ilies. The advantage of our model is that it accommodates any

method for estimating additive genetic covariances. Morrissey

(2014) provided a conceptually similar approach with a distinct

methodology. He uses a path model to estimate selection at the

phenotypic level, and then infers the genetic consequences of se-

lection via an analog of the breeder’s equation. A great strength

of Morrissey’s approach is that it incorporates a very literal repre-

sentation of the causal relationships among traits and their genetic

underpinnings (i.e., genes only interact causally via their effects

on phenotypes). However, it also suffers from a core problem with

the classical breeder’s equation: unmeasured environmental vari-

ables can confound the analysis, even if they lack genetic variance

(Rausher 1992; Morrissey et al. 2010; Morrissey 2014).

Morrissey (2014) approximates the evolutionary response to

selection as

�Z̄ = �Gεη. Here, � is a matrix representing the total

causal effects of each trait on all other traits (excluding fitness),

estimated using a phenotypic path model. The extended selection

gradients η are estimates of the total causal effects of each trait

on fitness. The matrix Gε represents additive genetic variances

and covariances beyond those attributable to causal relationships
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in the path model. For instance, in our model, mating success is

influenced by other phenotypic traits, and so some of the additive

genetic variance in mating success will result from additive ge-

netic variance in these traits. The matrix Gε contains additional

additive genetic variance in mating success that does not result

from the underlying traits.

For our model, we have:

� =
[

I n 0
βT

M 1

]
, (15)

where I n is an n × n identity matrix and 0 is a column of zeroes,

and

η = �T βR =

⎡
⎢⎢⎢⎢⎣

βRMβM1 + βR1

...

βRMβMn + βRn

βRM

⎤
⎥⎥⎥⎥⎦ (16)

Because η is based on phenotypic rather than additive genetic

relationships, it is sensitive to confounding by environmental vari-

ables, including those with zero additive genetic variance. This

confounding then affects the estimated evolutionary response to

selection �Z̄.

In contrast, our quantitative genetic approach is only sensi-

tive to confounding factors that covary genetically with measured

variables (e.g., other unmeasured traits, extended phenotypes, or

parental effects: Stinchcombe et al. 2014). For instance, suppose

that the mean temperature during development has direct positive

effects on both snout-vent length (SVL) and reproductive suc-

cess in a reptile. If temperature is excluded from the analysis,

then Morrissey’s approach will overestimate the causal pheno-

typic relationship between SVL and reproductive success, and

this overestimate is carried through to the genetic analysis. Our

model instead relies on the additive genetic covariance between

SVL and reproductive success, which is not expected to be biased

by temperature. We provide a worked example of our quantitative

genetic approach in the Supporting Information.

Concluding Remarks
Path-analytic approaches have yielded fundamental insights into

how selection operates (Kingsolver and Schemske 1991; Scheiner

et al. 2000; Morrissey 2014), which are especially relevant to

understanding and quantifying sexual selection (Arnold 1994;

Arnold and Duvall 1994; Jones 2009; Anthes et al. 2017). We

have built upon this tradition by providing a consistent frame-

work to quantify sexual selection that avoids many of the pitfalls

of previous approaches. Our approach estimates causal relation-

ships based on observations of unmanipulated natural or labo-

ratory populations. These causal inferences will necessarily be

uncertain, because it is impossible to measure and control for

all possible confounding factors. We agree with Anthes et al.

(2017) that manipulative studies should play a larger role in sex-

ual selection research. Nonetheless, many important variables are

difficult to manipulate (e.g., attractiveness, fighting ability, mat-

ing success). We consequently believe that observational studies

will continue to play a central role in sexual selection research,

and it is important to analyze them in a conceptually sound sta-

tistical framework. We see two important goals for future theory:

(1) integrate pre- and postmating sexual selection into a single

framework that breaks down the relative contributions of these

pathways to selection; and (2) incorporate estimates of mate qual-

ity into the definition of mating success to bring the operational

definition of premating sexual selection in line with our concep-

tual understanding.
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Figure S1. Path diagram for the worked example ‘Cheating vs caring’, shown with care effort C, ornament expression O, mating success M, and
reproductive success R.
Figure S2. Estimated phenotypic and additive genetic variance-covariance matrices for the worked example ‘Cheating vs caring’.
Table S1. Results of ‘Cheating vs caring’, showing phenotypic path coeffcients and estimates of sexual, remaining and total selection on care effort C and
ornament expression O.
Table S2. Results of ‘Cheating vs caring’, showing genetic path coeffcients and the estimated evolutionary response to sexual, remaining and total selection
on care effort C and ornament expression O.
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