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Summary

1. Lande and Arnold’s approach to quantifying natural selection has become a standard tool in evolutionary

biology due to its simplicity and generality. It treats linear and nonlinear selection in two separate frameworks,

generating coefficients of selection (e.g. linear and quadratic selection gradients) that are not directly comparable.

Due to this somewhat artificial division, the Lande–Arnold approach lacks an integratedmeasure of the strength

of selection that applies across qualitatively different selection regimes (e.g. directional, stabilizing or disruptive

selection).

2. We define a unified measure of selection, the distributional selection differential (DSD), which includes both

linear and nonlinear selection. TheDSDquantifies total selection on a trait, regardless of the underlying selection

regime.

3. The DSD can be partitioned into a directional component, representing selection on the trait mean, and a

non-directional component, representing selection on the shape of the trait distribution (e.g. variance, skew or

the number of modes). When multiple traits are measured, the DSD can also be separated into direct and corre-

lated effects, analogously to linear selection gradients. As with linear selection differentials, the DSD on a stan-

dardized trait is limited inmagnitude by the opportunity for selection.

4. TheDSD is a general-purposemeasure of the total strength of selection. It is particularly valuable where tradi-

tional analyses provide limited insight, such as in comparative studies where the shape of selection is variable.

Partitioning the DSD into directional and non-directional selection allows biologists to assess whether selection

acts consistently in one direction, or in opposing directions over different parts of the trait range.
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Natural selection is the differential survival and reproduction

of individuals with particular traits over their competitors,

leading to non-random associations between phenotype and

fitness within a generation (Lande&Arnold 1983; Frank 2012;

Morrissey 2014). Selection can change not only the means of

quantitative traits, but also the shapes of their distributions,

including properties like variance, skew and the number and

location of modes. For instance, in a study of the medium

ground finch Geospiza fortis, beak size showed two distinct fit-

ness peaks, indicating selection for greater bimodality of beak

size (Hendry et al. 2009). Changes in the trait mean are known

as linear or directional selection, whereas all other changes in

the trait distribution are collectively called nonlinear selection

(Phillips &Arnold 1989).

Lande & Arnold’s (1983) influential framework quantifies

linear and nonlinear selection using two separate regression

analyses. This generates coefficients of selection (e.g. linear and

quadratic selection gradients: Table 1) that are not directly

comparable and that cannot be combined quantitatively to

give an overall measure of the strength of selection. We

consequently lack an integrated measure of selection that

applies regardless of the shape of selection (e.g. directional, sta-

bilizing or disruptive: see Brodie, Moore & Janzen 1995). For

instance, we currently cannot compare the strength of selection

among traits that experience qualitatively different types of

selection, or assess the relative importance of linear and nonlin-

ear selection on a single trait.

We develop a unified index of the strength of selection, the

distributional selection differential (DSD) d, which incorpo-

rates both linear and nonlinear components (Henshaw, Kahn

& Fritzsche 2016). The DSD quantifies the total difference in

trait distributions between all individuals and those that pro-

duce offspring (i.e. the trait distributions before and after selec-

tion). It allows the strength of selection to be summarized on a

single scale, regardless of the underlying selection regime. The

DSD can be partitioned into two components: (i) a directional

component, representing the change in the trait mean, which is

equal in magnitude to the linear selection differential s, and (ii)

a non-directional component, representing changes in the

shape of the trait distribution (e.g. variance, skew or the num-

ber of modes) after accounting for the change in themean. The

DSD is simple to calculate from data on trait values and fitness*Correspondence author. E-mail: jonathan.henshaw@anu.edu.au
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in a population (see eqn 19 below: an implementation in R is

available at https://github.com/yoavzemel/dsd).

We provide three mathematically equivalent definitions of

the DSD and use them to derive its basic properties. Like

the linear selection differential, the DSD is fundamentally

limited by phenotypic variance, and for standardized traits,

it can be no larger than the square root of the opportunity

for selection (i.e. d� ffiffiffiffiffiffiffiffiffiffiffi
varw

p
, where w is relative fitness: see

Crow 1958; Wade & Arnold 1980; Jones 2009). When selec-

tion is purely directional, the DSD and the linear selection

differential are equal in magnitude (i.e. d = |s|). However,

the DSD also accounts for nonlinear selection, which the

linear selection differential ignores. For example, under

pure stabilizing or disruptive selection, we have s = 0, but

d = |cov(w,|Z|)|, where Z is a standardized trait value. These

two results are particular cases of a general principle: the

DSD can always be written as a linear selection differential

on a function h(Z) of trait values (i.e. d = cov(w, h(Z))),

where h meets a technical constraint that ensures it does

not vary too steeply with trait values (the ‘gradient condi-

tion’: Table 1).

Selection generally acts onmultiple correlated traits simulta-

neously, and it is useful to separate selection acting directly on

a trait from indirect selection due to trait correlations.We con-

sequently also define distributional selection gradients, which

allow the DSD to be separated into direct and indirect effects,

analogously to linear selection gradients in the Lande–Arnold

framework.

Our approach to comparing pre- and post-selection trait dis-

tributions derives from optimal transport theory and has a

long history of application in other disciplines (reviewed in

Villani 2009). Similar methods have been applied to categorize

images by visual similarity (Rubner, Tomasi & Guibas 1998,

2000), to measure inequalities of wealth or income (the Gini

index: Gini 1912; Cowell 2011), to quantify variation in plant

size and fecundity (Weiner & Solbrig 1984; Damgaard &Wei-

ner 2000), and to compare anatomical surfaces (Boyer et al.

2011) and patterns of animal space use and movement

Table 1. Glossary of terms

Term Description Definition

Absolute fitness Unstandardized fitness of individuals (e.g. the number

of offspring)

W

Relative fitness Normalization of absolute fitness so thatmean relative

fitness equals one

w ¼ W
EW

Linear selection differential Difference inmean trait values before and after

selection

s = cov(w,Z)

Phenotypic variance–
covariancematrix

Variance–covariancematrix of a trait vectorZ MatrixPwith entriesPij = cov(Zi,Zj)

Linear selection gradient Partial regression coefficients of fitness on trait values,

representing the strength of direct linear selection on

standardized traits, assuming that fitness is an

additive linear function of trait values

b = P�1s

Quadratic selection differential Difference due to selection in the products of pairwise

deviations from trait means

C ¼ cov w; ðZ� EZÞðZ� EZÞT
� �

Quadratic selection gradient Partial regression coefficients of the quadratic

regression of fitness on trait values, providing an

approximation of the shape of the fitness surface

c = P�1CP�1

Gradient condition Requirement that a function h(z) not change too

quickly with trait values z

Grad is the set of functions h such that for all trait

values, z1 and z2, we have |h(z1) � h(z2)| ≤ |z1 � z2|

Distributional selection

differential (DSD)

Difference in trait distributions due to selection Earthmover’s definition: d ¼ min
F

EF Z� � Zj j;where
F is any joint probability distribution of the trait

valuesZ andZ* before and after selection

Covariance definition: d ¼ max
h2Grad

covðw; hðZÞÞ

Cumulative integral definition: d ¼ R1
�1

G� zð Þ � GðzÞj jdz;
whereG andG* are the cumulative distribution

functions of trait values before and after selection

Maximizer Any function of trait values that achieves the

maximumpossible covariance with relative fitness

while satisfying the gradient condition

Any h 2 Grad such that cov(w, h(Z)) = d

Maximizer variance–
covariancematrix

Variance–covariancematrix of themaximizers h(Z) of

a trait vectorZ

MatrixHwith entriesHij = cov(hi(Z), hj(Z))

Distributional selection

gradient

Partial regression coefficients of fitness on the vector of

maximizers h(Z), representing the total strength of

direct selection on standardized traits, assuming that

fitness is an additive linear function ofmaximizers

d = H�1d
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(Shamoun-Baranes et al. 2012; Kranstauber, Smolla & Safi

2016). Closer to the current work, they have also been used to

compare trait distributions between populations (Gregorius,

Gillet & Ziehe 2003) and to measure the convergence of trait

distributions under selection (Rudnicki & Zwole�nski 2015;

Zwole�nski 2015).

Quantifying selection using the Lande–Arnold
framework

We first revisit the Lande–Arnold framework for quantifying

selection. Trait values before selection can be understood as a

random variable Z with probability distribution P. The abso-

lute fitness of an individual (e.g. the number of offspring pro-

duced) is a random variableW. Relative fitness w is calculated

by normalizing absolute fitness so that mean relative fitness

across the population is equal to one:

w ¼ W

EW
: eqn 1

The fitness function (or fitness surface for multivariate traits)

is the mean relative fitness of individuals conditional on their

trait values, EðwjZÞ. Trait values after selection are represented
by a random variable Z* with distribution dP� ¼ EðwjZÞdP.
This means that after selection, the frequency of a trait value

equals its frequency before selection times themean relative fit-

ness of individuals with that trait value. It is important to note

that trait values are only measured once: the trait distribution

after selection is a hypothetical distribution, calculated from

pre-selection trait values and fitness.

For any function h(Z) of trait values, we write

EhðZÞ ¼ R hðzÞdPðzÞ for its expected value before selection.

Its expected value after selection is

EhðZ�Þ ¼
Z

hðzÞdP�ðzÞ ¼
Z

EðwjzÞhðzÞdPðzÞ ¼ EwhðZÞ:
eqn 2

L INEAR SELECTION DIFFERENTIALS AND GRADIENTS

The change in the mean value of any function of trait values

h(Z) due to selection can be written as

EhðZ�Þ � EhðZÞ ¼ EwhðZÞ � ðEwÞðEhðZÞÞ ¼ covðw; hðZÞÞ:
eqn 3

This is a generalized form of the Robertson–Price identity

(Robertson 1966; Price 1970; Walsh & Lynch 2014). It mea-

sures the change in mean function values within a generation

between all individuals and those that produce offspring (with

the latter weighted by the number of offspring per parent).

In particular, the change in the mean trait value is given by the

linear selection differential:

s :¼ EZ� � EZ ¼ covðw;ZÞ: eqn 4

The multivariate version of this definition takes the same

form, except that s and Z are replaced by vectors s and Z of

selection differentials and trait values, respectively, and the

covariance is taken betweenw and each component ofZ.

When multiple traits are measured, linear selection gradients

remove the effects of phenotypic correlations amongmeasured

traits, which allows linear selection on each trait to be sepa-

rated into direct and indirect (i.e. correlated) effects (Lande

1982; Lande & Arnold 1983). Linear selection gradients are

defined as the vector of partial regression coefficients b of rela-
tive fitness on the trait vectorZ according to themodel

w ¼ 1þ bTðZ� EZÞ þ e: eqn 5

Here, e is an error term with mean zero. Linear selection gradi-

ents and differentials are related by the equation s = Pb, where
P is the phenotypic variance–covariance matrix. Direct selec-

tion on a trait i is then given by Piibi, whereas indirect selection
due to trait correlations is

P
j 6¼i Pijbj. Note that this interpreta-

tion assumes that fitness is an additive linear function of trait

values (Mitchell-Olds & Shaw 1987). The term selection gradi-

ents stems from the property that if the traits follow a multi-

variate normal distribution, then b ¼ E
oEðwjZÞ

oZ is the average

gradient of the fitness surface with respect to trait values

(Lande & Arnold 1983). This property is no longer valid when

the normality assumption is violated (Morrissey & Sakrejda

2013).

QUADRATIC SELECTION DIFFERENTIALS AND

GRADIENTS

The (univariate) quadratic selection differential represents the

change in the average squared deviation from the pre-selection

trait mean, ðZ� EZÞ2, due to selection. That is,
c :¼ covðw; ðZ� EZÞ2Þ: eqn 6

In a multivariate setting, the quadratic selection differential

is the matrix C of changes in the average product of pairwise

deviations from pre-selection traitmeans:

C :¼ cov w; ðZ� EZÞðZ� EZð ÞTÞ: eqn 7

Note that the covariance is taken between w and each entry

in the matrix ðZ� EZÞðZ� EZÞT. When there is no direc-

tional selection (i.e. when s = 0), the quadratic selection differ-

ential equals the change in the phenotypic variance-covariance

matrix P due to selection (i.e.C = P* � P). More generally, it

is given by the less interpretable relationship C = P* � P

+ ssT (Lande & Arnold 1983; Mitchell-Olds & Shaw 1987;

Schluter 1988). Linear and quadratic selection differentials

are not measured in the same units, and so quantitative com-

parisons between them are meaningless.

Quadratic selection gradients give an approximate descrip-

tion of the shape of the fitness surface (Phillips & Arnold

1989). They are defined as the partial regression coefficients c
corresponding to the quadratic terms in the quadratic regres-

sion of relative fitness on trait values (Lande & Arnold 1983;

Phillips &Arnold 1989;Morrissey& Sakrejda 2013):

w ¼ aþ bTZþ 1

2
Z� EZð ÞTc Z� EZð Þ þ e: eqn 8

Note that the partial regression coefficients b for the linear

terms in this quadratic regression usually differ from those in

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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the linear regression above (i.e. b 6¼ b in general). Quadratic

selection gradients and differentials are related by

c = P�1CP�1. When trait values are multivariate normal, the

quadratic selection gradients c equal the average curvature of

the fitness surface (i.e. c ¼ E
o2EðwjZÞ

oZ2 : see Lande & Arnold

1983; Morrissey & Sakrejda 2013). In any case, the interpreta-

tion of c assumes that the fitness surface is a quadratic function

ofZ (Schluter &Nychka 1994).

Three equivalent definitions of theDSD

We now provide three mathematically equivalent definitions

of the DSD (Table 1). This plurality is useful both in visualiz-

ing the DSD (Fig. 1) and in deriving its basic properties.

A formula for calculating the DSD for empirical applications

is given in eqn 19 (see https://github.com/yoavzemel/dsd for

an implementation in R).
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Fig. 1. Illustration of three equivalent definitions of the distributional selection differential (DSD), based on simulations of populations under direc-

tional selection (a, c, e) and disruptive selection (b, d, f). The DSDs and linear selection differentials are d = 0�53, s = 0�53 (directional selection) and
d = 0�54, s = 0�04 (disruptive selection). (a, b)Earth mover’s definition: Binned histograms of trait distributions before selection (red) and after selec-

tion (blue); areas where the two distributions overlap are shaded purple. The DSD is approximately equal to the minimum amount of work needed

to shift the ‘red’ mass until it fully coincides with the ‘blue’ mass (‘approximately’ because the binned histogram pictured is a simplification of the

empirical distribution). (c, d)Covariance definition: Relative fitnessw (blue dots) and maximizers h (red line; translated so that EhðZÞ ¼ 1 for ease of

visualization). The DSD is d = cov(w, h(Z)). (e, f) Cumulative integral definition: Cumulative distribution functions of trait values before selection

(G, red) and after selection (G*, blue). TheDSD is equal to the area between the two curves (shaded purple).
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EARTH MOVER’S DEFIN IT ION

Our first definition comes with a neat visual metaphor: if we

imagine the distributions of trait values before and after selec-

tion as piles of sand, then the DSD is the minimum amount of

‘work’ needed to transform one pile into the other (Fig. 1a,b).

Any difference in the shape of the pre- and post-selection trait

distributions will necessitate some amount of sand being

shifted, and so this image captures selection of all types. To

make themetaphor precise, we need to specify howmuchwork

is required to move mass around. We assume that work is

equal to the amount of mass times the distance moved. Other

assumptions are certainly possible (e.g. using the squared dis-

tance), but ours has the advantage of ensuring that the DSD is

measured in the same units as the linear selection differential.

To build intuition, we begin with the case where a trait can

take only a finite number of values, z1, . . ., zn. Before selection,

each trait value zi is obtained by a proportion pi of the popula-

tion. After selection, the frequency of each trait value is

p�i ¼ piwi, where wi is the mean relative fitness of individuals

with trait value zi. In this discrete case, we can visualize a distri-

bution of trait values as n pointmasses, such that the totalmass

adds to one.

A flow F between trait distributions is an n 9 nmatrix with

non-negative entries such that for all i (Rubner, Tomasi &

Guibas 2000; Levina&Bickel 2001),X
j

Fij ¼ pi; eqn 9

and for all j,X
i

Fij ¼ p�j : eqn 10

We interpret Fij as the amount of mass moved from trait

value zi to zj. The first condition ensures that the total mass

moved from each pile i equals the size of the pile pi before selec-

tion. The second ensures that the total mass moved to each pile

j equals its size p�j after selection. Note that it is permissible to

movemass from a pile to itself at zero cost.

We assume that the work needed to move mass from zi to zj
is the product of the amount of mass moved Fij and the differ-

ence |zj � zi| between the two trait values. For a given flow F,

the total work needed to transform the trait distribution is then

dF ¼
X
i;j

Fij zj � zi
�� ��: eqn 11

We can reformulate this definition in terms of standard con-

cepts in probability theory (Levina & Bickel 2001). From

eqns 9 and 10, we see that a flow can be viewed as a probability

mass function over all pairs of trait values, with marginal dis-

tributions equalling the pre- and post-selection trait distribu-

tions Z and Z*. The amount of work associated with the flow

F can then be written as

dF ¼ EF Z� � Zj j: eqn 12

We define the DSD as the minimum amount of

work required to transform the pre-selection trait

distribution into its post-selection form, taken over all

possible flows:

d :¼ min
F

dF ¼ min
F

EFjZ� � Zj: eqn 13

This definition generalizes easily to cases where the space of

possible trait values is infinite (e.g. continuous distributions of

quantitative traits). In this case, a flow is a simply a joint proba-

bility distribution of Z and Z*. We refer to eqn 13 as the earth

mover’s definition of the DSD, based on a similar metric used

in computer science (Rubner, Tomasi & Guibas 1998, 2000).

In mathematics, it is known by many names, but most

commonly as theWasserstein distance (Villani 2009).

The minimum value in the earth mover’s definition always

exists (Villani 2009) and we call a flow optimal if it achieves this

minimum (i.e. F is optimal if dF = d). Both the definition of

work in eqn 11 and the constraints in eqns 9 and 10 are linear

in the matrix values Fij, so for empirical applications an opti-

mal flow can be found using standard linear programming

software. However, alternative approaches to calculating the

DSD are more practical, as they provide explicit expressions

for theDSD and related optimizers (see eqns 19 and 20).

COVARIANCE DEFINIT ION

Linear selection differentials can be written as covariances

s = cov(w, Z) between relative fitness and trait values. We

now show that the DSD can be expressed similarly as

d = cov(w, h(Z)), where h is a function that is constrained

not to vary too quickly with changes in trait values.

A precise definition of ‘too quickly’ is as follows. A function

h satisfies the gradient condition if for any two trait values z1
and z2, we have

hðz1Þ � hðz2Þj j � z1 � z2j j: eqn 14

This means that the gradient of h between any two trait val-

ues must always lie between plus and minus one. Conse-

quently, h changes no more quickly than the identity function

f zð Þ ¼ z with trait values. We write Grad for the set of func-

tions satisfying the gradient condition. In mathematics, these

are known as Lipschitz (or, more precisely, 1-Lipschitz) func-
tions (Villani 2009).

For any function h(Z) of trait values, we can consider the

change in its mean due to selection (i.e. EhðZ�Þ � EhðZÞ). The
Kantorovich–Rubinstein theorem provides a deep connection

between optimal flows and changes in mean function values

(Gibbs & Su 2002; Villani 2009). It states that theDSD is equal

to the maximum change in mean function values, taken over

all functions h that satisfy the gradient condition:

d ¼ max
h2Grad

EhðZ�Þ � EhðZÞð Þ: eqn 15

We know from eqn 3 that differences in mean function val-

ues can be written as covariances between the function and rel-

ative fitness. From this, we obtain the covariance definition of

theDSD:

d ¼ max
h2Grad

covðw; hðZÞÞ: eqn 16

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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We refer to any function h that obtains the maximum

covariance in this definition as a maximizer. A consequence of

eqn 16 is that the DSD can always be written as a linear selec-

tion differential d = cov(w, h(Z)), where h is a maximizer

(Fig. 1c,d).

It is possible to explicitly construct maximizers. We write G

andG* for the cumulative distribution functions of trait values

before and after selection [i.e. the functions GðzÞ ¼ PðZ� zÞ
and G�ðzÞ ¼ PðZ� � zÞ]. A maximizer is then any function of

the form (see Appendix S1 for derivation):

hðzÞ ¼ hð0Þ þ
Zz
0

sgn GðxÞ � G�ðxÞð Þdx: eqn 17

In simple terms, h increases when G(x) > G*(x) and

decreases when G(x) < G*(x). In both cases, the change is

linear with a slope of one.

Maximizers h can be thought of as rough approximations to

the fitness function, but with gradients constrained to lie

between plus and minus one (Fig. 2). More precisely, they
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Fig. 2. Fitness functions (blue) and maximizers h (red) for six different selection regimes, shown with the distributional selection differential (DSD),

d, and linear selection differential, s: (a) Smooth directional selection for higher trait values, based onmean absolute fitnessW = exp(Z/3). (b) Trun-

cation selection for higher trait values, such that only individuals in the top half of the trait distribution are selected to reproduce. (c) Pure stabilizing

selection, based onW = exp(�Z2). (d) A combination of directional and stabilizing selection, based onW = exp(�(Z�1)2). (e) Pure disruptive selec-

tion, based onW = exp(�1/Z2). (f) M-shaped selection, based onW = exp(� (Z + 1)2) + exp(�(Z�1)2). Note that different selection regimes may

generate the samemaximizer h (compare a and b). Trait values are assumed to follow a standard normal distribution.
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show in which direction mass is moved to transform the pre-

selection trait distribution into the post-selection distribution

under an optimal flow (details in Appendix S1). Intervals

where h is increasing (with a gradient of +1) correspond to

‘uphill’ movement from lower to higher trait values, while

decreasing h (with a gradient of �1) corresponds to ‘downhill’

movement. For example, under pure directional selection for

higher (lower) trait values, the maximizer h is a simple straight

line with positive (negative) gradient. Under pure stabilizing

selection, h is a pointed ‘hill’ centred at the mean trait value,

indicating that selection moves mass towards the mean from

both directions (Fig. 2).

Maximizers are not uniquely defined, for two reasons. First,

the value of h(0) is always arbitrary, so h can only ever be

unique up to a constant. Secondly, whenever G(x) = G*(x),

the value of sgn(G(x) � G*(x)) = sgn(0) in eqn 17 is not

uniquely determined, but can be chosen freely from the inter-

val [�1,1]. This leads to non-unique h in cases where the set

{x: G(x) = G*(x)} is large (in technical terms, when it has

positive Lebesguemeasure).

The non-uniqueness of maximizers is no problem for the

covariance definition of the DSD, because all maximizers have

the same covariance with relative fitness. However, when we

define distributional selection gradients below, it becomes nec-

essary to pick out and work with a particular maximizer. In this

case, we suggest (i) following the convention sgn(0) = 0, which

ensures that maximizers are unique up to an additive constant,

and (ii) choosing h(0) so that EhðZÞ ¼ 0, which fixes the con-

stant.

CUMULATIVE INTEGRAL DEFIN IT ION

The third definition of the DSD relates it to differences in

the cumulative distributions of trait values before and after

selection. We write G and G* for the cumulative distribu-

tion functions, as above, and G�1 and G*�1 for their

generalized inverses, the quantile functions (K€ampke &

Radermacher 2015). The cumulative integral definition of the

DSD is (Gibbs & Su 2002; Villani 2003; Henshaw, Kahn &

Fritzsche 2016):

d ¼
Z1
�1

GðzÞ � G�ðzÞj jdz ¼
Z1
0

G�1ðqÞ � G��1ðqÞ�� ��dq:
eqn 18

Geometrically, the DSD is equal to the area between the

cumulative distribution curves of trait values before and after

selection (Fig. 1e,f).

EMPIRICISTS READ HERE: CALCULATING THE DSD

FROM FINITE SAMPLES

In empirical applications, trait values and fitness are measured

on a finite number of individuals. We can then approximate

the trait and fitness distributions of the population by the

empirical distributions of the sample. Suppose that n

individuals are sampled with trait values z1, . . . , zn and relative

fitness w1, . . . , wn. We assume that these values are sorted so

that z1 ≤ z2 ≤ ��� ≤ zn. Using the cumulative integral defini-

tion, theDSD is then

d ¼
Xn�1

i¼1

ðziþ1 � ziÞ
Xi
j¼1

1� wj

n

�����
�����: eqn 19

Confidence intervals for d can be calculated using bootstrap-

ping, assuming sufficient sample sizes.

Using the covariance definition, the DSD is given equiva-

lently by d = cov(w, h(Z)), where the maximizer h is defined

iteratively by (see Appendix S1):

h ziþ1ð Þ � h zið Þ ¼ ðziþ1 � ziÞsgn
Xi
j¼1

1� wj

n

 !
: eqn 20

As noted above, the maximizer h is not uniquely defined. In

this formulation, the first value h(z1) is arbitrary, and when

Pi
j¼1

1�wj

n ¼ 0, the value of sgn
Pi
j¼1

1�wj

n

 !
can be chosen freely

from the interval [�1,1]. When it is desirable to work with a

particular maximizer, we suggest using the convention

sgn(0) = 0 and shifting h so that EhðZÞ ¼ 0, as described

following eqn 17.

WHAT UNITS IS THE DSD MEASURED IN?

Like the linear selection differential, the DSD is measured in

the same units as the original trait values. This is intuitive, as

both measures represent changes in trait values due to selec-

tion. It is often helpful to standardize the value of each trait

(before selection) by first subtracting its mean value and then

dividing by its standard deviation:

Z0 ¼ Z� EZffiffiffiffiffiffiffiffiffiffiffi
varZ

p : eqn 21

If traits are standardized, then both linear selection differen-

tials and the DSD are in units of trait standard deviations,

which aids in comparison among traits (Jones 2009).

SIMULATED EXAMPLES

To illustrate the three equivalent definitions of the DSD, we

simulated populations under two selection regimes (Fig. 1).

For each population, we drew trait valuesZ of 500 individuals

from a standard normal distribution. We then simulated

absolute fitness (representing, e.g. the number of offspring

produced) as either:

1 W�Poisson(exp(Z/2)), representing directional selection

for higher trait values, or

2 W�Poisson(|Z|), representing disruptive selection for

extreme trait values.

We approximated the true distributions of traits and relative

fitness by the empirical distributions of the samples and then

calculated the DSD and maximizers using eqns 19 and 20,

respectively. The DSD was approximately equal to the linear

selection differential under directional selection (d, s = 0�53,
© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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Fig. 1a,c,e). Under disruptive selection, the linear selection dif-

ferential was close to zero (s = 0�04) but theDSD still captured

the change in the shape of the trait distribution due to selection

(d = 0�54, Fig. 1b,d,f).

Fundamental properties

DIRECTIONAL, STABIL IZ ING AND DISRUPTIVE

SELECTION

We now formally consider how the DSD behaves under three

important types of selection: directional, stabilizing and dis-

ruptive (Lande & Arnold 1983; Schluter 1988; Phillips &

Arnold 1989). We say that a trait is under pure directional

selection if relative fitnessw is amonotonic function of trait val-

ues (cf. Mitchell-Olds & Shaw 1987; Schluter 1988). If w

is non-decreasing, then G ≥ G* and so eqn 17 implies that

h(z) = z is a maximizer. Similarly, h(z) = �z is a maximizer

when w is non-increasing. In both cases, the covariance defini-

tion of theDSD gives us:

d ¼ covðw;ZÞj j ¼ sj j: eqn 22

Similarly, we say that pure stabilizing selection occurs when

(i) the trait distribution before selection is symmetrical about

the mean trait value and (ii) relative fitness w is a symmetric

non-increasing function of distance from the trait mean (i.e. a

non-increasing function of jZ� EZ). Pure disruptive selection

can be defined in the same way, except replacing ‘non-increas-

ing’ with ‘non-decreasing’. A consequence of these definitions

is that directional selection is absent (i.e. s = 0). Under pure

stabilizing or disruptive selection, theDSD is given by

d ¼ jcovðw; jZ� EZjÞj: eqn 23

The quantity covðw; jZ� EZjÞ is conceptually similar to the

univariate quadratic selection differential c in eqn 6, in that it

quantifies a change in dispersion from the pre-selection trait

mean. However, it measures the change in the average absolute

distance of trait values from the mean, rather than the average

squared distance. This is actually an advantage of the DSD:

because it is defined via functions that satisfy the gradient con-

dition, it is measured on the same scale as the linear selection

differential. In contrast, themagnitudes of linear and quadratic

selection differentials in the original Lande–Arnold framework

are not directly comparable.

DIRECTIONAL AND NON-DIRECTIONAL COMPONENTS

OF THE DSD

The DSD can be partitioned to reflect the relative contribu-

tions of directional and non-directional selection. Suppose F is

an optimal flow between the trait distributions before and after

selection. The redistribution of mass under F is equivalent to

the sequential action of two flows, D and N, which can be

thought of as two consecutive episodes of selection (Arnold &

Wade 1984; see Appendix S1 for details, where we also

consider the DSD under multiple episodes of selection more

generally). The directional flowD shifts themean trait value by

moving mass in only one direction (i.e. from lower to higher

trait values or vice versa), at a cost of dD = |s|. The non-direc-
tional flow N reshapes the trait distribution without changing

its mean, at a cost of dN = d� |s|.
The DSD can thus be partitioned as d = dD + dN, where (i)

the directional component dD = |s| represents the change in the

trait mean and (ii) the non-directional component dD = d � |s|
represents changes in the shape of the trait distribution (e.g.

variance, skew or the number of modes) after accounting for

any shift in themean.

THE DSD IS L IMITED BY VARIANCE IN FITNESS

The linear selection differential on any standardized trait is at

most as large as the standard deviation in relative fitness (i.e.

jsj � ffiffiffiffiffiffiffiffiffiffiffi
varw

p
). For this reason, the variance in relative fitness is

sometimes referred to as the opportunity for selection I (Crow

1958; Wade & Arnold 1980; Jones 2009). We now show that

the DSD on a standardized trait is bounded by the same

quantity.

The covariance definition of the DSD implies that for any

maximizer h, we have

d ¼ covðw; hðZÞÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varw � var hðZÞ

p
: eqn 24

The variance of h(Z) is at most as large as the variance in

trait valuesZ, because

var h Zð Þ ¼E h Zð Þ � Eh Zð Þð Þ2 � E h Zð Þ � h EZð Þð Þ2

� E Z� EZð Þ2¼ varZ:
eqn 25

The first inequality follows because the average squared

deviation from the mean is always smaller than the average

squared deviation from any other quantity; the second is from

the gradient condition on h. This gives us

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varw � varZ

p
: eqn 26

In particular, when Z is a standardized trait, we have

d� ffiffiffiffiffiffiffiffiffiffiffi
varw

p ¼ ffiffi
I

p
. Therefore, like the linear selection differen-

tial, the DSD on a standardized trait is no larger than the

square root of the opportunity for selection.

Direct and indirect selection on correlated traits

When multiple traits are measured, linear selection gradients

allow linear selection on a trait to be separated into direct and

indirect effects, where the latter arise via correlations among

measured traits. Here, we analogously define distributional

selection gradients, which allow us to separate the DSD into

direct and indirect effects.

We begin by noting the similarity between the covariance

definitions of linear selection differentials and the DSD (i.e.

s = cov(w, Z) and d = cov(w, h(Z)), where h is a maximizer).

We can use this analogy to construct a regression equation

similar to eqn 5, namely:

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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w ¼ 1þ dThðZÞ þ e: eqn 27

Here, h(Z) is a vector of maximizers of the trait vectorZ and e
is an error term with mean zero. We assume that maximizers

are standardized using the procedure following eqn 17, which

ensures that Ew ¼ 1. The distributional selection gradients are

defined as the vector of partial regression coefficients d.
For linear selection, the relationship between selection gradi-

ents and selection differentials is expressed by the vector equa-

tion b = P�1s, where P is the phenotypic variance–covariance
matrix. Similarly, we can write the distributional selection

gradients as

d ¼ H�1d; eqn 28

where H is the variance–covariance matrix of the maximizers

h(Z) and d is the vector of DSDs. The direct effect of the ith

trait on fitness is then given byHiidi, and the indirect effect due

to correlated traits is
P
j 6¼i

Hijdj.

Note that unlike the definition of the DSD, which makes no

assumptions about the relationship between fitness and trait

values, the interpretation of distributional selection gradients

as the direct components of selection assumes that fitness is a

linear and additive function of themaximizers. Aswith all mul-

tivariate regressions, small deviations from these assumptions

will likely be tolerated, but large deviations will hinder the

interpretability of the results.

An alternative approach to defining distributional selection

gradients involves fewer assumptions about the distributions

of h(Z) and fitness. First, the fitness surface on h(Z) can be

approximated using a semi-parametric method such as cubic

splines or a generalized additivemodel (Schluter 1988; Schluter

&Nychka 1994;Morrissey& Sakrejda 2013). The approach of

Morrissey & Sakrejda (2013) can then be used to obtain selec-

tion gradients by averaging local gradient values over the

approximated fitness surface.

Discussion

TheDSD provides an integrated measure of selection on a trait,

including both linear and nonlinear selection. It measures how

much the trait distribution differs within a generation between

all individuals and the parents of offspring. Although the DSD

quantifies the overall strength of selection, it does not provide

qualitative information on the shape of the fitness function or

even the direction of mean trait change. In particular, many dif-

ferent selection regimes may generate the same value of the

DSD. We consequently see the DSD as complementary to

existing approaches that provide such qualitative information,

including linear and quadratic selection differentials and gradi-

ents (Lande & Arnold 1983) and numerical approximation of

fitness surfaces (Schluter 1988; Schluter & Nychka 1994; Shaw

& Geyer 2010; Morrissey & Sakrejda 2013). The maximizer h

associated with the covariance definition of the DSD also pro-

vides a visual summary of fitness functions (Figs 1c,d and 2).

The distributional approach is general and can be used

whenever the total strength of selection must be quantified. It

may be particularly useful in cases where traditional analyses

provide limited insight. First, the DSD can be used to compare

the strength of selection across traits, taxa or environments

that differ qualitatively in their selection regime. For example,

directional selection on one trait can be comparedwith stabiliz-

ing selection on another. By contrast, linear and quadratic

selection coefficients are not measured in the same units, and

so the existing framework does not allow for comparison of

selection acrossmodes.

Secondly, we have shown that the DSD can be partitioned

into a directional component, representing the change in the

trait mean, and a non-directional component, representing

changes in the shape of the trait distribution after accounting

for the change in themean. TheDSD can consequently be used

to compare the relative importance of directional and non-

directional (e.g. stabilizing or disruptive) selection on a given

trait. We believe that this is more informative than the tradi-

tional distinction between linear and nonlinear selection. Biol-

ogists are generally more interested in the direction of selection

than in the precise shape of the fitness surface (Mitchell-Olds &

Shaw 1987).When fitness is an increasing (or decreasing) func-

tion of trait values, non-directional selection dN in our frame-

work will equal zero, even though curvature in the fitness

surface may still lead to nonzero quadratic selection gradients

(Schluter 1988). Our approach consequently allows biologists

to assess whether selection acts consistently in one direction,

or in opposing directions over different parts of the trait

distribution.

Thirdly, the DSD can be used to quantify selection when the

fitness surface is complex in shape. For instance, some species

show bi- or multimodal trait distributions, where selection

may (at least conceivably) be stabilizing around each peak but

disruptive between them (e.g. M-shaped selection: Rueffler

et al. 2006; Hendry et al. 2009). Potential examples include

size dimorphism in social insect queens (Heinze & Tsuji 1995;

Wolf & Sepp€a 2016), horn size in male beetles with alternative

reproductive tactics (Eberhard & Gutierrez 1991; Moczek &

Emlen 2000; Nijhout 2003; Buzatto, Tomkins & Simmons

2014) and adaptive divergence of bill size in bird species that

straddle multiple ecological niches (Smith 1993; Hendry et al.

2009). TheDSD can be used to quantify the total selection act-

ing on such trait distributions, including both stabilizing and

disruptive components.

Like traditional selection differentials and gradients, the

DSD and distributional selection gradients are strictly descrip-

tions of the relationship between phenotypes and fitness. Infer-

ences about the resulting change across generations (i.e. the

response to selection, whether genetic or phenotypic) are com-

plicated by the complexity of the genotype–phenotype rela-

tionship, including the possibility of unmeasured traits or

environmental factors that covary with both measured traits

and fitness (Mitchell-Olds & Shaw 1987; Rausher 1992).

Importantly, selection will only lead to cross-generational

change if trait values and fitness are associated at the genetic

level (Morrissey, Kruuk&Wilson 2010).

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution
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Although our current analysis is restricted to selection on

phenotypes, it may be possible to derive a genetic analogue of

the DSD using estimated breeding values of traits instead of

phenotypic values. Any such approach would need to account

for statistical weaknesses in the derivation of breeding values

(Hadfield et al. 2010). An alternative approach is to incorpo-

rate distributional thinking directly into the construction of

animal models (Kruuk 2004; Wilson et al. 2010). A ‘genetic’

DSD could then be constructed without relying on estimates

of individual breeding values [cf. Stinchcombe, Simonsen &

Blows (2014), where linear selection gradients are carried

into a genetic setting using the secondary theorem of natural

selection].
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