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Abstract. Parasites are ubiquitous in nature but assessing their prevalence inwildfish populations is often challenging due
to their cryptic nature. Low abundance can also hinder detailed studies. Here, we report a relatively high prevalence (4.3%;
range = 0–28%) of an ectoparasitic cymothoid isopod (Anilocra nemipteri) infecting the bridled monocle bream (Scolopsis
bilineatus) on reefs surrounding Lizard Island on the northern Great Barrier Reef (GBR). The prevalence of infected and
previously infected fish at this location was nearly 15%, which greatly exceeds reports from other localities on the GBR. At
least one parasitised fish was observed at 75% of the reefs surveyed, although prevalence varied across sites. Parasitised
S. bilineatuswere, on average, 25% smaller than unparasitised or previously parasitised fish. Given that these parasites have
known detrimental effects on host growth, survivorship and swimming ability, our observations suggest that A. nemipteri
may influence the size structure of its host population in the wild. Since A. nemipteri is large, conspicuous and relatively
abundant, it provides an ideal study system to examine a range of important questions on the evolutionary ecology of
parasites.
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Parasites can substantially alter host fitness by negatively
affecting physiological, behavioural and morphological traits
(Minchella and Scott 1991; Lehmann 1993; Poulin and Thomas
1999; Barber et al. 2000; Wood et al. 2007). Despite their
ecological importance (Poulin 1999; Wood et al. 2007; Kuris
et al. 2008), assessing the prevalence of parasites can be
challenging (Justine 2010) due to their often cryptic nature
(Minchella and Scott 1991; Kuris et al. 2008) and sometimes low
abundance in natural populations (e.g. Grutter 1994, 1995).
However, some ectoparasites are highly conspicuous (Adlard
and Lester 1995; Bunkley-Williams and Williams 1998),
making them ideal study systems to examine the potential
effects of parasitism on host fitness (Lehmann 1993). In fishes,
ectoparasites can pose additional challenges as streamlining is
important to reduce the cost of locomotion in water (Vogel
1994). Therefore, parasites may increase host susceptibility to
predation in addition to decreasing host nutritional status and
growth, all of which can influence the population dynamics and
structure of the host species (Minchella and Scott 1991; Barber
et al. 2000).

On the Great Barrier Reef (GBR), the bridled monocle bream
(Scolopsis bilineatus) is parasitised by the cymothoid isopod
Anilocra nemipteri, which attaches posterodorsally to the eye of

its host on the right or left side of the midline using its pereopods
(Bruce 1987; Grutter 1994) (Fig. 1a, b). Infections leave a scar
that is visible long after the parasite has detached (Bunkley-
Williams and Williams 1998) (Fig. 1c). Ectoparasitic isopods in
the family Cymothoidae infect a wide range of fishes on coral
reefs worldwide (Bruce 1987; Bunkley-Williams and Williams
1998). Their large size (up to 23mm or 30% of host total length;
Grutter 1994;Adlard andLester 1995;D.G.Roche, unpubl. data)
and asymmetric attachment probably interfere with a range of
fitness-enhancing activities (Adlard and Lester 1994; Östlund-
Nilsson et al. 2005; Fogelman et al. 2009). However, the
prevalence of infections on S. bilineatus reported to date at
various sites on the GBR are either low or nil (Lester and Sewell
1989; Grutter 1994; A. E. Boaden, pers. comm.). Here, we assess
current and past infections of S. bilineatus by A. nemipteri using
counts of currently infected and parasite-scarred individuals at
Lizard Island on the northern GBR. We also examine possible
effects of the parasite on the size structure of the host population.

We used 50� 4m belt transects (n = 3–7 per site) to record
infections of S. bilineatus by A. nemipteri on 12 reefs above 6m
depth at Lizard Island, northernQueensland (14�400S, 145�280E).
Two snorkelers swimming at a constant speed of 0.2m s–1

surveyed fish 2m on either side of the transect tape. We recorded
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four variables for each S. bilineatus observed: fish size (total
length), colour phase (juvenile or adult), condition (unparasitised,
parasitised or scarred from a previous infection), and the location
of parasite attachment or scarring (left or right side of the body).

Juveniles were identified as such by having distinct yellow and
black stripes on the upper half of the body (Randall et al. 1997).

Prior to data collection, we practiced estimating fish lengths to
the nearest 1 cm using model fishes underwater (deviations from
actual sizes were <1 cm). We tested for differences in the
proportion of infected or scarred individuals among sites using
two generalised linear models with binomial error terms to
account for the underlying distribution of the data. We tested for
differences in size among parasitised, unparasitised and
previously parasitised fish using a one-way ANOVA and a post
hoc Tukey test. Normality and homoscedasticity were assessed
with diagnostic plots of the residuals and size was power-
transformed using a boxcox function to meet the assumptions of
themodel.Weused a binomial test to determinewhether parasites
preferentially attached to one side of the body midline, including
data from both parasitised and parasite-scarred fish.

Transects by snorkelers on 12 different reefs revealed an
overall current A. nemipteri prevalence of 4.3% (12 800m2

surveyed; n = 374 fish). Prevalence was 3.6% on adults and 9.8%
on juveniles. An additional 9.8% of adult fish had marks of past
infection. Prevalence differed significantly across reef sites
(range = 0–28%; F11,51 = 1.99,P < 0.05) with the highest average
prevalence of infected fish at Bird Islets (28%) and Bird Lagoon
(23%) (Fig. 2). The proportion of previously infected fish also
differed across sites (range = 0–34%;F11,51 = 2.95,P< 0.01)with
the highest average ratio of scarred individuals occurring at Big
Vickies (34%), Mermaid (16%) and Watson’s Bay (9%).

Juveniles (mancae) of A. nemipteri only infected juvenile
hosts and not adult hosts. Host size differed among parasitised,
unparasitised and previously parasitised fish (F2,371 = 8.76,
P < 0.001). Overall, parasitised S. bilineatus tended to be ~25%
smaller (TL = 10.75� 0.79 cm,mean� s.e.m) than unparasitised
(TL= 14.12� 0.19 cm; Tukey HSD, P < 0.001) and previously
parasitised (TL= 14.84� 0.32 cm; Tukey HSD, P < 0.001) fish.
There were no size differences between parasitised and
previously parasitised fish (Tukey HSD, P> 0.65). Finally,
parasites did not attach on one side of the host more than the other
(30 left versus 27 right; binomial test, P > 0.75).

We found that overall infection of the bridled monocle bream,
S. bilineatus, by the cymothoid ectoparasitic isopod,A. nemipteri,
was high at our study sites compared with other sites on the
GBR. Although S. bilineatus is an abundant coral reef fish
(Boaden and Kingsford 2012), previous studies have reported nil
or very few infections by A. nemipteri at a variety of locations
along the GBR, including Heron Island, Lizard Island, One Tree
Island andOrpheus Island (Lester andSewell 1989;Grutter 1994;
A. E. Boaden, pers. comm.). In a survey of parasites infecting
fishes at Lizard Island and Heron Island, Grutter (1994) reports a
single S. bilineatus parasitised by A. nemipteri. A prevalence of
4.3% for adultfishes and 9.8% for juveniles observed in our study
at Lizard Island is therefore comparatively high for this species.
An additional 9.8% of adults bore marks of past infection, raising
the total numberoffish affected byparasites to nearly 15%.Tissue
damage is thought to result from a necrotic reaction of the host’s
tissues underneath the parasite or the host growing around the
parasite, creating a deformation of the body (Bunkley-Williams
andWilliams 1998). Previous studies have examined the biology
and host–parasite interactions of congeneric anilocrid species
using laboratory and field experiments (Adlard and Lester 1994,

(a)

(b)

(c)

Fig. 1. Bridled monocle bream (Scolopsis bilineatus) with (a, b) an
ectoparasitic isopod (Anilocra nemipteri) attached above the eye, and (c)
scarring from a past infection.
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1995; Östlund-Nilsson et al. 2005; Fogelman and Grutter 2008;
Fogelman et al. 2009); however, none of these studies reported
prevalence in the wild, which is essential to assess the frequency
of infections in host populations and to compare prevalence
among different cymothoid species infecting fishes on the GBR.

Our reef sites at Lizard Island were separated by hundreds of
metres to a few kilometres. Differences in prevalence across this
small spatial scale likely result because cymothoids are highly site
specific (Bunkley-Williams andWilliams 1998) and tend to occur
in aggregations (Adlard and Lester 1994). The fact that mancae
probably have limited dispersal abilities (see Adlard and Lester
1995; Fogelman and Grutter 2008; Jones et al. 2008) and that
S. bilineatus is site-attached (Boaden and Kingsford 2012)
suggests that there is little opportunity for infection to spread
across sites that are separated by large sand patches (e.g.
50–100m long) and therefore not well connected. Nonetheless,
75% of the reefs we surveyed harboured at least one parasitised
fish (Fig. 2), and the prevalence of infections reached 28% at one
site (Lagoon-Bird Islets) (Fig. 2). The parasite had no preference
for attaching on the right or left side of its host.

Infected fish were considerably smaller than unparasitised or
scarred individuals at Lizard Island (Fig. 3). This skewed size
distribution of infected individuals could result from a simple
preference of the parasite for smaller hosts since mancae (larvae)
of parasitic cymothoids preferentially infect juvenile fish and
subsequently grow with their host (Adlard and Lester 1995;
Fogelman and Grutter 2008). However, parasitic cymothoid
isopods associate with their hosts for long periods (Bunkley-
Williams and Williams 1998) and experimental studies have
shown that theycan inflict deepwounds, stunt growth (Adlard and
Lester 1994; Fogelman and Grutter 2008), impair reproduction
(Adlard and Lester 1994; Fogelman et al. 2009) and ultimately
kill their host (Adlard and Lester 1994; Bunkley-Williams and
Williams 1998; Fogelman and Grutter 2008). Therefore, by
impeding growth and removing individuals from the population
before they attain full maturity, the parasite may have notable
effects on the size structure of the host population. Interestingly,
scarred S. bilineatus that were previously parasitised did not
differ in size from unparasitised individuals, suggesting that
compensatory growthmight allowfish to reach their full size if the

parasite detaches. The possibility of resumed growth is supported
by recent data showing that parasite removal reverses the negative
physiological effects of A. nemipteri on its host in as little as 24 h
(Binning et al. 2013). However, distinguishing between a
preference of the parasite for small individuals and detrimental
effects on growth and survivorshipwould require a detailed study
using otolith microstructure analysis to age fish.

Finally, being abundant as well as easily observed and
manipulated, parasitic cymothoid isopods such as A. nemipteri
provide ideal systems to conduct observational and experimental
studies and answer a range of ecological and evolutionary
questions on host–parasite interactions. For example, due to its
large size, A. nemipteri was recently found to decrease
streamlining andswimmingabilities of its host bydirectly altering
the surface of the host’s body and increasing drag (Binning et al.
2013). Further studies would greatly improve our understanding
of the evolutionary ecology of parasites by using this system
to examine the effects of ectoparasitism on host fast-start
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Fig. 2. Abundance (�s.e.m)of parasitised (blackbars), previously parasitised (greybars) andunparasitised
(white bars) bridled monocle bream (Scolopsis bilineatus) at 12 sites around Lizard Island.
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Fig. 3. Size distribution of parasitised (black bars), previously parasitised
(grey bars) and unparasitised (white bars) bridled monocle bream (Scolopsis
bilineatus) at Lizard Island.
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performance (escape response, burst swimming), handedness
(lateralisation), physiology (anaemia, cortisol levels),
demography (age determination with otoliths), habitat use
(distribution across water flow gradients) as well as inter- and
intrasexual selection (female mate choice and male–male
competition).
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