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Although adaptive change is usually associated with complex changes in phenotype, few genetic investigations have been

conducted on adaptations that involve sets of high-dimensional traits. Microarrays have supplied high-dimensional descriptions

of gene expression, and phenotypic change resulting from adaptation often results in large-scale changes in gene expression. We

demonstrate how genetic analysis of large-scale changes in gene expression generated during adaptation can be accomplished

by determining high-dimensional variance partitioning within classical genetic experimental designs. A microarray experiment

conducted on a panel of recombinant inbred lines (RILs) generated from two populations of Drosophila serrata that have diverged

in response to natural selection, revealed genetic divergence in 10.6% of 3762 gene products examined. Over 97% of the genetic

divergence in transcript abundance was explained by only 12 genetic modules. The two most important modules, explaining

50% of the genetic variance in transcript abundance, were genetically correlated with the morphological traits that are known

to be under selection. The expression of three candidate genes from these two important genetic modules was assessed in an

independent experiment using qRT-PCR on 430 individuals from the panel of RILs, and confirmed the genetic association between

transcript abundance and morphological traits under selection.
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Understanding the genetic basis of adaptation remains a key goal

of evolutionary genetics (Orr 2005; Hoekstra and Coyne 2007).

Although adaptive change is usually associated with complex

changes in morphological phenotype (Blows 2007), few genetic

investigations have been conducted on adaptations that involve

sets of high-dimensional traits (Albert et al. 2008). This is a par-

ticularly important limitation of evolutionary studies, as a full

understanding of the evolution of a focal trait is unlikely to be

gained in the absence of knowledge on how it interacts with the

wider phenome that ultimately is comprised of a very large num-

ber of traits (Houle 2010). Pleiotropic genetic associations among

multiple traits can cause focal traits to respond to selection in the
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direction opposite to that favored by selection (Walsh and Blows

2009), or to stop traits from evolving in the presence of genetic

variation and ongoing selection (Hine et al. 2011). The genetic

independence of a focal trait from other traits, or the genetic inde-

pendence among different sets of traits—which is often referred

to as modularity (Cheverud 1996; Hansen 2003), are important

determining factors of if, and how, adaptation will occur in a

particular circumstance.

The investigation of pleiotropic associations among phe-

notypes is relatively uncommon in the application of high-

throughput genomic technologies that generate vast amounts of

data. Although marker-based QTL mapping approaches have been

successful in identifying discrete regions of the genome that un-

derlie divergence between populations in individual traits, they

often do not directly consider pleiotropic relationships among

multiple traits (Xu et al. 2005; Biswas et al. 2008), as distinct

from mapping single traits and searching for nonoverlap of con-

fidence regions to reject the hypothesis of pleiotropy. Similarly,

microarrays have supplied high-dimensional descriptions of tran-

script abundance, which have traditionally been analyzed by the

phenotypic identification of co-expressed networks of gene tran-

scripts based on various clustering approaches. However, the ge-

netic analysis of these high-dimensional expression phenotypes,

as distinct from the phenotypic clustering of co-expressed tran-

scripts, is more problematic (Kadarmideen et al. 2006), and has

tended to concentrate on individual transcripts, rather than the

genetic control of sets of co-expressed transcripts (Biswas et al.

2008). What has been lacking are statistical approaches that al-

low the multivariate analysis of the abundance of a large number

of transcripts measured from classical genetic experimental de-

signs to determine the extent of shared genetic control of gene

expression.

The importance of addressing how pleiotropic effects of

genes influence the evolution of high-dimensional expression

phenotypes has been highlighted by studies that have found a

very large number of expression profiles that differ between the

sexes (Ranz et al. 2003; Gibson et al. 2004), developmental stages

(White et al. 1999), and between strains and populations adapted

to different environments (Franchini and Egli 2006; Ronald and

Akey 2007; Lai et al. 2008; St-Cyr et al. 2008). It is difficult

to reconcile changes of expression in such a large number of

transcripts with the relatively modest number of QTL that are

often found to underlie adaptations in single traits, even after tak-

ing into account the underpowered nature of QTL mapping. The

large number of transcripts exhibiting a change in expression is

therefore likely consequence of pleiotropic regulation of expres-

sion or physical linkage to some unknown extent (Chesler et al.

2005; Kadarmideen 2006; Biswas et al. 2008; Gilad et al. 2008;

Litvin et al. 2009; Skelly et al. 2009). A recent genetic anal-

ysis of transcript abundance within a population of Drosophila

melanogaster indicated that the large number of differences in

transcript abundance among genotypes were likely to be a conse-

quence of a smaller number of modules of pleiotropically related

expression phenotypes (Ayroles et al. 2009). This indicates that

although phenotypic change resulting from adaptation may result

in large-scale changes in gene expression, such changes may be

accomplished through a modest number of regulatory genes that

influence these pleiotropic networks.

The development of genetic analyses for high-dimensional

phenotypes, particularly in the extreme case of large numbers of

transcript abundances in systems genetics, has lagged behind our

ability to generate these large datasets. High-dimensional genetic

analysis of transcript abundances can be approached in at least two

ways. First, transcript abundance phenotypes can be subjected to

an ordination procedure to generate “eigentraits,” linear combina-

tions of the large number of expression traits that covary together

(Biswas et al. 2008). This allows coregulation of phenotypes to

be inferred, and the discovery of eQTL that are associated with

large-scale regulatory changes when suitable markers have also

been obtained. The extent to which the multivariate analysis of

expression phenotypes in this manner will reflect the underlying

genetic patterns of coregulation will depend on the contribution

of environmental covariance among the phenotypes in question.

For example, if the magnitude of an environmental correlation is

much stronger (or weaker) than the genetic correlation between

two transcripts, or if two correlations are of opposite signs in the

more extreme case, a misleading picture of the genetic coregu-

lation of transcript abundance will be given by the multivariate

analysis of phenotypes. In contrast, multivariate genetic analy-

sis of standard metric traits (Mezey and Houle 2005; Hines and

Blows 2006; Meyer and Kirkpatrick 2008) explicitly removes the

confounding influence of environmental covariance to directly

model the multivariate genetic relationships among traits.

A second approach is to explicitly consider the partition-

ing of environmental and genetic covariance among expression

phenotypes to remove the confounding influence of the environ-

ment on transcript abundance. This is a challenging task as the

high-dimensional analysis needs to incorporate an experimental

design that is more complex than measures of multiple pheno-

types of individuals. In a recent example of such an approach, the

genetic co-regulation of gene expression among inbred lines of

Drosophila was inferred from patterns among bivariate genetic

correlations that had been estimated by partitioning out the influ-

ence of environmental covariance among transcripts. These ge-

netic correlations were arranged in a distance matrix, from which

genetic modules of coexpressed genes were identified using clus-

tering (Ayroles et al. 2009; Stone and Ayroles 2009).

Although the removal of the confounding influence of

environmental covariance among transcripts in this way is a

major advantage over the multivariate analysis of transcript
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abundance phenotypes, two issues remain to be addressed be-

fore high-dimensional genetic analysis of transcript abundance

can be implemented in a framework that shares all the advantages

of standard multivariate genetic analysis. First, clustering is ex-

plicitly exploratory, lacking a hypothesis-testing framework that

can be readily adapted to experimental designs with hierarchical

levels, that are often required to partition phenotypic variation

into genetic and environmental sources. Second, conversion of

the data to a network comprised of vertices and edges based on a

distance matrix of absolute pairwise genetic correlations was used

to approximate the genetic covariance structure among multiple

traits (Ayroles et al. 2009; Stone and Ayroles 2009), in place of

the true genetic variance–covariance (G) matrix, the multivariate

extension of bivariate genetic correlations that is modeled in stan-

dard multivariate quantitative genetics (Mezey and Houle 2005;

Hines and Blows 2006; Meyer and Kirkpatrick 2008). Genetic

information from the sign of bivariate genetic correlations, and

hence the exact nature of how transcripts are coregulated, was

lost as a consequence of this transformation. This precludes a

formal determination of the genetic independence of expression

across multiple transcripts, based on the true eigenstructure of the

multivariate genetic relationships among transcripts. Ideally, the

G matrix among a large number of transcript abundances needs

to be directly estimated within an established hypothesis-testing

framework so that the multivariate genetic relationships among

transcripts can be fully characterized.

Using a well-characterized example of adaptation, we

demonstrate how high-dimensional genetic analysis of gene ex-

pression can be accomplished by determining the modularity of

the effect space of the among-genotype (genetic) variance in a

multivariate linear model (Hine and Blows 2006). Reproductive

character displacement is an adaptation that occurs when individ-

uals from two different species that coexist encounter each other

during mate choice, and suffer a fitness cost if they perceive an

individual from the other species as a potential mate (Brown and

Wilson 1956; Howard 1993). In this situation, reinforcing selec-

tion acts on the traits that are used by individuals in mate choice

so that they evolve to avoid making such mistakes. Species of the

Drosophila serrata complex use contact pheromones, comprised

of cuticular hydrocarbons (CHCs), to identify potential mates.

The CHCs of male D. serrata are under strong sexual selection as

a consequence of female choice (Blows et al. 2004; Higgie and

Blows 2008) and display reproductive character displacement in

field populations where the closely related D. birchii is sympatric

with D. serrata (Higgie et al. 2000; Higgie and Blows 2007).

The reproductive character displacement evolves in experimental

sympatry under laboratory conditions (Higgie et al. 2000), demon-

strating that reinforcing selection is responsible for the divergence

in CHCs among sympatric and allopatric D. serrata populations.

Enzymes that are involved in the production of Drosophila CHCs

have been shown to have very high rates of evolution in gene ex-

pression between the sexes (Shirangi et al. 2009), suggesting that

gene regulation may play a major role in the response to selection

of these traits.

We present the results from a series of three genetic analyses.

First, using a panel of recombinant inbred lines (RILs) generated

from two populations of D. serrata that have diverged in response

to reinforcing selection, we determined that the evolutionary re-

sponse to selection was associated with changes in expression of

a large number of gene transcripts, but that these changes were

explained by a much smaller number of genetically independent

changes in regulation. Second, we show that the two major ge-

netic modules identified by the high-dimensional genetic analysis

were genetically correlated with the morphological traits under

reinforcing selection, suggesting that changes in transcript ex-

pression underlie the adaptive changes in morphology. Finally,

we used Quantitative Reverse Transcription PCR (qRT-PCR) to

provide independent experimental validation of the genetic asso-

ciation between transcript abundance and CHC phenotypes. The

expression of three candidate genes, identified as playing a major

role in the two important genetic modules by the multivariate ge-

netic analysis, was shown to be genetically correlated with CHC

expression.

Methods
RIL CONSTRUCTION

Eungella and Forster are two geographic locations along the east

coast of Australia; the former in a sympatric region in which

D. birchii is present, while D. birchii is not present at the latter

allopatric region (Higgie et al. 2000; Higgie and Blows 2007).

Two lines founded by a single inseminated female from mass-

bred populations sourced from Eungella and Forster were made

cytologically standard (inversion free), and inbred for 10 gen-

erations of full-sibling mating. A single male and female from

both parental lines were used in reciprocal crosses to balance the

maternal and paternal contributions from the two populations in

the panel of RILs. F2 full-sibling pairs were used to establish 101

RILs that were inbred by full-sibling mating for 17 generations,

effectively reducing initial heterozygosity by >90%. From each

of the two parental lines and 41 randomly selected RILs, 10 indi-

vidual male flies were phenotyped for CHC profile and saved for

subsequent qRT-PCR analysis after the microarray experiment.

For the microarray experiment, 15 of the 101 RILs were ran-

domly selected for transcriptional profiling (details below). After

several candidate genes had been identified by the microarrays,

their expression was then examined using qRT-PCR analysis in the

original two parental lines and in the 41 randomly selected RILs.

These 41 RILs included eight of the RILs that were represented

in the microarray experiment (Fig. 1).
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Figure 1. Reproductive character displacement of male cuticular

hydrocarbons (CHCs) in sympatric and allopatric parental lines and

RILs of D. serrata. We used the control population data from Higgie

et al. (2000) that consisted of the CHC phenotypes from 20 males

from each of three sympatric and three allopatric populations, to

create a single, univariate trait of reproductive character displace-

ment. We applied a multivariate hierarchical linear model to these

data, with replicate geographic population nested within sympa-

try or allopatry (using Proc Mixed in SAS). The canonical variate

at the sympatry/allopatry level from this model represented the

linear combination of CHCs that differed most between sympatry

and allopatry. The equation for the canonical variate was then ap-

plied to the male CHC data from the two parental lines and 41 RILs.

Boxes represent line means and bars are 95% confidence inter-

vals. Lines have been arranged along the x-axis to place sympatric

(Eungella) and allopatric (Forster) parental lines at either end, with

the RILs in an ascending order of y-axis value. The parental lines

are significantly different from one another. The RILs that were

also assayed in the subsequent microarray experiment are shown

with gray boxes.

CHC PHENOTYPING

Ten males from each of the 41 RILs and two parental lines were

collected when males were 6-day old post eclosion for a total

sample size of 430. To collect the CHC samples, flies were indi-

vidually immersed in 120 μL of hexane for 3 min before being

vortexed for 1 min and then removed from the hexane. Immedi-

ately, the same individual flies were then placed in Trizol (Invitro-

gen, Carlsbad, CA) and prepared for qRT-PCR as below. The CHC

samples were kept at −20◦C prior to analysis on an Agilent 7890A

gas chromatograph that was fitted with an Agilent HP5 column

of 30-m length, 250-μm diameter, and 0.10-μm film thickness.

Using an Agilent 7693A autosampler, 1 μL of each sample was

pressure-pulse injected into a 200◦C splitless inlet. The hydrogen

carrier gas flow started at 2.5 mL/min held for 3.7 min, and then

ramped at 5 mL/min to a final flow of 5 mL/min. The oven tem-

perature started at 140◦C held for 0.55 min, ramped at 100◦C/min

to 190◦C, then ramped at 45◦C/min to 320◦C and was held for

1 min, for a total run time of 4.94 min. The flame ionization

detector was set at 315◦C.

The resulting 430 male CHC phenotypes were quantified in

the same way as was done previously (Higgie et al. 2000; Higgie

and Blows 2007, 2008). Briefly, for each male the relative areas of

nine peaks were calculated using Agilent GC Chemstation version

B.04.01. These peaks correspond to the compounds 5,9-C24, 5,9-

C25, 9-C25, 9-C26, 2-Me-C26, 5,9-C27, 2-Me-C28, 5,9-C29, and

2-Me-C30 (Fig. 2 in Higgie and Blows 2007). To make the data

suitable for multivariate statistical analyses, the nine relative peak

areas were transformed into eight logcontrasts using 9-C26 as the

divisor (for equation see Higgie and Blows 2007).

EXPRESSION PROFILING AND INITIAL DATA

MANAGEMENT

Agilent oligonucleotide microarrays were designed using eArray

Version 5.0 (Agilent Technologies, Inc., Santa Clara, CA) based

on a D. serrata EST library (Frentiu et al. 2009). The 8 × 15K

format arrays contained the standard Agilent control set and three

replicates of the 60 mer oligonucleotides representing each of

the 3762 features. Four replicate pools of 20, 5-day-old males

were collected from each of the 15 RILs for analysis (for a to-

tal of 60 hybridizations). RNA extraction, cDNA synthesis and

labeling, hybridization and scanning procedures were as previ-

ously reported (Ye et al. 2009) with the exception that hybridiza-

tions were single color (Cy-3). Four replicates of each RIL were

hybridized against eight chips in a partial block design, where

chips (partial blocks) never received more one replicate from any

particular RIL. The median signal intensity minus background

fluorescence for each spot was log transformed and an average

was calculated for each feature based on the three technical repli-

cates per hybridization. All data have been deposited in ArrayEx-

press (http://www.ebi.ac.uk/microarray-as/ae/) under the acces-

sion no. A-MEXP-1759. Drosophila melanogaster orthologs of

D. serrata ESTs were identified using FlyBase (www.flybase.org)

and the associated annotations were used for functional analysis

and tissue expression.

STATISTICAL ANALYSIS

The abundance of all 3762 transcripts was subjected to the uni-

variate hierarchical mixed linear model:

yi jkl = chipi + RIL j + repk( j) + εl(i jk),

where chip and RIL were treated as fixed effects, and replicate hy-

bridizations (rep) within RILs was a random effect, implemented

using the Mixed Procedure in SAS. Transcripts were then ranked

according to the significance of the among-RIL effect. A Bon-

ferroni correction for multiple comparisons gave a conservative
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estimate of the number of transcripts that displayed significant

among-RIL variation. Heritabilities for all transcripts were esti-

mated from the same mixed model, but where RIL was changed

to a random effect, and the proportion of total variance that was

present at the RIL level was calculated.

We determined the number of statistically independent di-

mensions required to explain the among-RIL variation in tran-

scriptional abundance in two steps using theory for multivariate

effect spaces of linear models (Amemiya 1985; Anderson and

Amemiya 1991; Hine and Blows 2006) which we outline be-

low. First, we subjected the 10 most significant transcripts to this

analysis to determine in a relatively low-dimensional situation,

how many underlying genetically independent expression mod-

ules could be identified. Second, we repeated the analysis for the

most significant 82 transcripts. We chose to use the first 82 genes

in this analysis as detailed investigation showed that our approach

began to lose power to detect significant dimensions if more tran-

scripts were included as a consequence of the limited number of

degrees of freedom available in the experiment (Fig. S1).

Hine and Blows (2006) presented a method for establish-

ing which dimensions of the genetic variance–covariance matrix

are statistically supported. Below, we summarize this method,

which draws from three papers from the statistical literature. The

first shows how a negative definite matrix can be partitioned into

the sum of a nonnegative matrix and a negative definite matrix

(Amemiya 1985). This work forms the basis for constructing the

covariance matrix based on only those dimensions that receive

statistical support. The second derives a test statistic, Y, to deter-

mine the dimensionality of a covariance matrix (Anderson and

Amemiya 1991) based on the estimated quantiles of the distribu-

tion of Y, which is presented in the third paper (Amemiya et al.

1990).

The method presented by Amemiya (1985) manipulates

mean square matrices obtained from a one-way multivariate

ANOVA of p traits. The experimental design for our RIL exper-

iment was also a one-way multivariate ANOVA, where variation

among the means for each biological replicate within RILs repre-

sent the within-source error, and the variation among RILs is the

between-source component. Hine and Blows (2006) show how

the method can also be adapted for alternative experimental de-

signs. In the one-way MANOVA, the estimator for the covariance

matrix at the effect (RIL) level is

�bb = r−1(mbb − mww),

where mbb and mww are the between group and within group

p × p mean square matrices, respectively, and r is the coefficient

of the variance components at the between group level. Amemiya

(1985) notes that, in the univariate case, the variance estimate:

σbb = r−1(mbb − mww)

will be in the parameter space (i.e., ≥0) if mbb − mww ≥ 0. He

then introduces a value, λ̂, such that

mbb − λ̂mww = 0. (1)

If λ̂< 1, mbb − mww is negative and the estimator for σbb

is 0.

A multivariate version of (1) is

|mbb − λmww| = 0. (2)

Solving (2) yields the vector λ of the p characteristic roots

(λi) of mbb in the metric of mww. If all λi are ≥ 1, (mbb − mww) is

nonnegative definite and the estimator for �bb is in the parameter

space. If some λi are < 1, Amemiya (1985) shows how to partition

the matrix (mbb − mww) into the sum of a nonnegative matrix,

(mbb − mww)+, and a negative definite matrix, (mbb − mww)−,

and derives a new, nonnegative definite estimator for �bb based

on this partition.

Hine and Blows (2006) extend this approach to construct

a nonnegative definite genetic variance–covariance matrix based

on only those dimensions of the effect space that are statistically

supported, combining the partitioning of mean square matrices

described above with Amemiya et al. (1991)’s work on deter-

mining the effective dimensionality of a covariance matrix. The

effective dimensionality is determined through a nested series of

hypothesis tests, starting with the null hypothesis that the effec-

tive number of dimensions (m) is less than or equal to the number

(k) of λi ≥ 1. This hypothesis can be accepted immediately, as

there can be at most as many dimensions as there are λi ≥ 1.

The method iterates through null hypotheses that m≤ k − 1,

m≤ k − 2. . . m≤ 0 until one of these null hypotheses is rejected.

For example, if the null hypothesis that m≤ k − 1 is rejected, the

effective dimensionality is k.

To test the null hypothesis that m ≤ b, Amemiya et al. (1991)

derive a test statistic,

Y =
k∑

i=b+1

f (λi ),

where

f (λ) = −M log λ + (M + N ) log

(
Mλ + N

M + N

)
.

Here, M and N are the degrees of freedom at the between-

group and within-group levels, respectively. The distribution of Y

for q = p − m is presented in Table 1 of Amemiya et al. (1990).

Once the effective dimensionality has been established, it is

then possible to construct the covariance matrix with only those

dimensions that are statistically supported. We present only the

essential steps to obtaining the reduced matrix, and refer readers
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Table 1. Eigenanalysis of the genetic variance in transcript abundance among the first 10 transcripts.

Probe e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

λ1
i 27.844 10.862 6.429 4.725 2.959 2.124 1.086 0.479 0.000 0.000

1579 0.849 −0.345 0.015 −0.355 0.124 0.043 0.018 −0.015 −0.064 0.114
2315 0.201 0.106 0.031 0.496 0.080 0.483 0.593 0.294 0.113 0.102
3476 0.034 0.454 −0.586 −0.449 0.047 −0.140 0.360 0.208 −0.010 −0.231
3739 −0.100 0.243 0.572 −0.521 −0.234 0.231 −0.021 0.383 0.241 0.140

678 0.288 0.500 −0.017 0.134 0.110 0.048 −0.269 −0.405 0.631 −0.008
1030 −0.016 −0.278 −0.019 0.139 0.225 −0.554 −0.001 0.512 0.529 0.046
2624 −0.279 −0.083 0.091 −0.241 0.877 0.255 0.032 −0.112 0.016 0.007
1481 −0.193 −0.283 −0.552 −0.132 −0.181 0.414 −0.221 0.056 0.273 0.480
1786 −0.168 −0.376 0.091 −0.206 −0.230 −0.040 0.551 −0.476 0.390 −0.206
594 0.041 −0.221 −0.080 0.030 −0.057 0.380 −0.303 0.233 0.139 −0.793

1The eigenvalues (λi) of each eigenvector (ei) are shown in the first row.

wishing to understand the somewhat lengthy statistical and linear

algebraic background to Amemiya (1985).

In practice, the λi are easily obtained as the eigenvalues of

LmbbLT, (3)

where L is a lower triangular matrix and defined as the transpose

inverse of U (upper triangular) which in turn is the Cholesky root

of mww. As the first step in determining �̂bb, the eigenvectors of

(3) are assembled as columns to form the matrix Q. Then define

the matrix

P = L−1Q.

. The first m columns of P are assembled as the p × m matrix

Pm, and are associated with the m characteristic roots of mbb in

the metric of mww that received statistical support. Now let �m be

a diagonal matrix of the m significant λi, and Imm be the m × m

identity matrix. The reduced-rank covariance matrix that consists

only of those m supported dimensions is then

�̂bb = r−1Pm(�m − Imm)PT
m,

.Here, the first m eigenvectors of �̂bbrepresent the combinations

of transcripts that are associated with each independent genetic

module. We used the arbitrary cut-off of 70% of the largest co-

efficient (Table S1) of an eigenvector (Mardia et al. 1979) to

determine which transcripts contributed strongly to each eigen-

vector. This approach indicated that two transcripts contributed

strongly to each of the first two eigenvectors (see results), and

three of these four candidate genes were chosen for amplification

using qRT-PCR across the larger sample of 41 RILs.

To determine if CHCs were genetically correlated with the

genetic modules, we first decomposed the variation among the

eight CHCs into two principal components that explained 88.8%

of the total variation in CHCs. This was required as a consequence

of the limited number of degrees of freedom (Lai et al. 2008)

available for among-line hypothesis testing. We then applied a

multivariate regression (implemented using the GLM procedure

in SAS) using the RIL means for the first two genetic modules,

calculated using the linear equations for each of the two eigen-

vectors, as the independent variables, and the RIL means for the

first two principal components of the CHC means as the response

variables.

qRT-PCR EXPRESSION OF CANDIDATE GENES

For each of the two parental lines and the 41 RILs, the RNA

from 10 individual males was extracted using Trizol (Invitro-

gen) following the manufacturer’s protocols and then treated with

2 μl of DNase I (Roche, Switzerland) for 30 min at 37◦C to

eliminate genomic DNA. Approximately 0.5 μg of total RNA

was then reverse transcribed to generate cDNA using random

primers and SuperScript III reverse transcriptase (Invitrogen)

according to manufacturer’s protocols. Primers were designed

to amplify three of the four candidate loci associated with the

first two genetic modules as identified by the microarray anal-

ysis (Table 1). Primers were as follows for each of the follow-

ing D. serrata ESTs (Supp Table 1): CL481Contig1 (CG10514

ortholog, probe ID 3011), 171 Forward ACGGGGATGTG-

TGGACTAAC and 276 Reverse GGAGAGCCCCAGAAGG-

AATA; CL600Contig1 (ninaD ortholog), 460 Forward TCGT-

GCTGAAATTGATGAGG and 583 Reverse GGTGCCAACG-

GCTATAAGAA; and CL470Contig1 (Amy-P ortholog), 112

Forward ATCAGTTGCGGTACCTGTCC and 260 Reverse

GTACTGCTTGGGCACCTTGT. Expression data were not ob-

tained for one of the D. serrata ESTs, CL0Est000004994973G08

(CG10514 ortholog, probe ID 1579), associated with mod-

ule 1 (Table 1). Like CL481Contig1, this EST was also or-

thologous to CG10514 in D. melanogaster. In fact these

two ESTs shared the same sequence over 415 base pairs.

CL481Contig1 possessed an additional 311 bp at the 5′ end
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that were not present in CL0Est000004994973G08 and the

latter possessed 70 bp at the 3′ end that were not present

in CL481Contig1. Although there is no evidence that the

D. melanogaster ortholog CG10514 produces multiple tran-

scripts, the two D. serrata ESTs acted independently and in oppo-

sition to one another with respect to module 1 as identified by the

transcriptional profiles of the 15 arrays (Table S1). So although

the primers above for CL481 effectively amplified the unique re-

gion in this EST, due to the short length and base composition,

a parallel set of primers could not be developed that successfully

amplified the unique region in CL0Est000004994973G08.

Quantitative PCR (qPCR) was performed on a Rotor-

gene 6000 (Corbett Life Science, Sydney, NSW) using

Platinum®SYBR®Green (Invitrogen Inc, Carlsbad, CA) accord-

ing to manufacturer’s instructions. For each sample, a mastermix

of 2 μl RNase-free water, 5 μl of SYBR Supermix, and 0.5 μl of

each primer (10 μM) was added to 2 μl of cDNA. Three replicates

were run for each sample. The cycling protocol was as follows; 1

cycle UDG incubation at 50◦C for 2 min, 1 cycle Taq activation

at 95◦C for 2 min, 40 cycles of denaturation at 95◦C for 5 s, an-

nealing at 60◦C for 5 s, extension at 72◦C for 15 s, fluorescence

acquisition 78◦C, and 1 cycle of melt curve analysis from 68◦C to

95◦C in 1◦C steps. Only one biological replicate per line was an-

alyzed in a single qRT-PCR run for a total of 10 independent runs

per gene. Each of the qRT-PCR runs was therefore a complete

randomized experimental block in this experimental design. The

effect of runs on the raw CT values for the candidate genes was

first removed using one-way ANOVA, and the residuals obtained

were then analyzed in conjunction with the CHC phenotypes of

the same males as outlined in the main text.

Results
CHC PHENOTYPES

The reproductive character displacement in the eight CHC traits

can be represented as a single phenotypic trait constructed from

the linear combination of the eight CHCs that differ most be-

tween allopatric and sympatric natural populations (Higgie et al.

2000). The distribution of the phenotypic means of the repro-

ductive character displacement trait in the parental lines and 41

RILs shows that the parental lines have extreme phenotypes for

this trait (Fig. 1), indicating that the construction of the parental

lines successfully captured the divergence in phenotype found

in the natural sympatric and allopatric populations. RILs were

predominantly distributed evenly between the sympatric and al-

lopatric parents. However, six RILs displayed CHC phenotypes

that were significantly more extreme than the parental line from

Forster (allopatric) population, indicating transgressive segrega-

tion that may be attributable to either purely additive or epistatic

effects.

TRANSCRIPT ABUNDANCE

The 15 RILs phenotyped for transcript abundance of 3762 ESTs

revealed that 400 (10.6%) of these displayed significant among-

RIL variation in expression levels after Bonferroni correction,

indicating that a substantial proportion of the genome differed in

transcript abundance between the two parental lines. The signif-

icance of these transcripts corresponds to a false discovery rate

(Storey and Tibshirani 2003) of 2.4 × 10−5 (using the q-value R

package). The distribution of heritability of transcript abundance

was highly skewed (Fig. 2), in contrast to the approximately nor-

mal distribution of heritability seen within outbred natural popu-

lations (Skelly et al. 2009). Because the RILs segregate only for

the genetic variation that was present between the original two

parental inbred lines, a large number of loci are expected to be

fixed for the same allele in both parents at those loci that have not

diverged among the two parent populations. These loci will there-

fore exhibit little segregating variance among the RILs, resulting

in the majority of transcripts having very low heritability.

Many of the top-ranked transcripts displayed two distinct

clusters of RILs. In Figure 3A, we display a typical example of

such a pattern using two of the top-ranked transcripts. This pattern

is consistent with two alleles at a single locus underlying much of

the genetic variation among RILs for each transcript. Importantly,

RILs tended not to co-segregate for the same combinations of

these putative allelic classes for different transcripts (not shown),

Figure 2. Distribution of heritability in transcript abundance

among 15 RILs of D. serrata. The 400 of the 3762 heritabilities

that remain significant after Bonferroni correction are shown in

filled bars.

3 1 3 2 EVOLUTION NOVEMBER 2011



MULTIVARIATE GENETIC ANALYSIS OF GENE EXPRESSION

Figure 3. Typical patterns of segregation of gene expression among 15 RILs of D. serrata. (A) RIL means represented by capital letters

and their 95% confidence intervals for the first and third transcripts that varied the most among RILs. Most transcripts that were highly

divergent among the RILs show this pattern of segregation into two distinct groups, resulting in four groups when plotted in the

two-dimensional space. (B) RIL means (±95% CIs) for the first two eigenvectors of the genetic variance among the RILs. Note how the

RIL means do not fall into discrete groups as is the case with single transcripts.

suggesting that each RIL had a different combination of these

putative alleles.

We first determined the dimensionality of the effect space

of the among-RIL genetic variance (see Materials and Meth-

ods) in transcript abundance for the first 10 transcripts that dis-

played the most genetic variation among the RILs (Table 1).

The reduced-rank G matrix (�̂bb) had eight eigenvalues that

explained a significant amount of the among-RIL genetic vari-

ance. The eigenvectors associated with these eigenvalues (Table

1) represented eight combinations of the 10 transcripts that are

co-regulated by independent genetic modules. Each eigenvector

tended to have contributions from a number of transcripts, indi-

cating that each individual transcript is not regulated by its own

independent module. In other words, it is unlikely that a single

gene controls the expression of a single transcript for each of

these transcripts that have diverged most among the two parental

populations.

We then proceeded to determine the dimensionality of the ge-

netic variance among the 82 transcripts that changed expression

to the most significant degree among the RILs, which represented

the limit for this experiment given our sample size (Fig. S1). In

total, 12 significant modules explained 97% of the total estimated

genetic variance among the 82 transcripts. The first two genetic

modules explained 50% of the genetic variation in transcript abun-

dance controlled by the 12 modules. In other words, half of all

the genetic variation expressed in the 82 transcripts is accounted

for by just two underlying genetic sources. In contrast to single

transcripts, genetic modules did not display a pattern of simple

biallelic segregation among the RILs (Fig. 3B). A greater number

of discrete phenotypic combinations were present, suggesting that

modules may represent combinations of genotypes at more than

one locus.

Only a handful of transcripts were strongly influenced by

each independent genetic module (Table S1). No more than seven

transcripts contributed strongly to each factor, and only four tran-

scripts contributed strongly to the first two modules. Further-

more, many (13 of 27) transcripts identified as being strongly

influenced by an independent genetic module were also strongly

influenced by more than one module (Table 1 and S1). These

patterns, in conjunction with the fact that eight genetic mod-

ules could be identified within just the first 10 transcripts, sug-

gest that adaptation may have targeted specific transcripts for a

substantial change in regulation, but this has occurred in con-

junction with smaller changes in a larger number (>400) of

transcripts.

TRANSCRIPT-MORPHOLOGY GENETIC ASSOCIATIONS

To determine if the underlying genetic modules were associated

with the major morphological traits known to be under reinforcing

selection, we first correlated the RIL line means for the first two

Table 2. Genetic correlations between individual CHCs and the

first two genetic modules of gene expression explaining 50% of

the genetic variance in transcript abundance.

CHC Module 1 Module 2

5, 9-C24 0.419 −0.131
5, 9-C25 0.404 −0.359
9-C25 0.497 −0.131
2-Me-C26 0.065 0.581
5, 9-C27 0.159 0.673
2-Me-C28 0.153 0.625
5, 9-C29 0.151 0.672
2-Me-C30 0.061 0.506
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modules with the means for the CHCs (Table 2). The two mod-

ules had opposite effects; module 1 was more strongly associated

with 5, 9-C24, 5, 9-C25, and 9-C25, whereas module 2 was more

strongly associated with the remaining CHCs and had negative

associations with the first three. Multivariate multiple regression

indicated a significant association between these first two prin-

cipal components of CHCs (see Materials and Methods) and the

first two genetic modules (Wilks’ lambda = 0.383, F4,22 = 3.38,

P = 0.027). The restricted number of RILs limited our ability

to further explore the associations between the independent ge-

netic modules and the CHC phenotypes. However, the opposing

effects of the first two modules on CHCs, and their significant

association with CHC expression indicated that the underlying

genetic modules controlling gene expression identified by our

analyses are either pleiotropically related or physically linked to

those morphological traits under strong selection in the sympatric

and allopatric parent populations.

The biological functions of the 82 most significant tran-

scripts are diverse (Table S2). Most of the transcripts are

of unknown function (28%) followed then by an associ-

ation with either metabolism (14%) or proteolysis (12%).

Genes associated with the top three genetic factors (Table S2)

have previously been shown to exhibit male-biased expres-

sion (http://141.61.102.16:8080/sebida/index.php) and be in-

volved with phototransduction, carbohydrate metabolism, and

microtubule-based movement, respectively. In most cases, the

link between the documented functional roles for the genes and

the mating phenotypes studied here is not self-evident. This is

commonly the case (Ayroles et al. 2009), given the nature of

complex traits and the limitations to our functional knowledge.

Regardless, several of the genes involved in the top 12 modules

do appear in potentially relevant studies in Drosophila (Table S1).

Mutants of Ade5, which is influenced by three independent fac-

tors, show increased male–male aggression (Edwards et al. 2009).

The gene is highly expressed in the head, spermatheca and carcass

(www.flyatlas.org). The amy-P locus (factors 2 and 3) exhibits el-

evated Ka/Ks ratios in closely related Drosophila species, which

has been interpreted as the signature of directional selection act-

ing during speciation (Civetta and Singh 1998). The expression

of CG31148, jon65Aiii, and Obp99c is down regulated in females

after mating (McGraw et al. 2004). Obp99c is also differentially

expressed in genetic lines selected for either fast- or slow-mating

responsiveness (Mackay et al. 2005). Dhc62B is a member of

a family of genes encoding dynein heavy chains that are highly

expressed in the testes and thought to play a role in sperm flagella

assembly and motility (Rasmusson et al. 1994). Lastly, jon66ci

shows phenotype plasticity and genotype by environment inter-

actions with respect to olfactory behavior that could be involved

with mating (Sambandan et al. 2008).

EXPRESSION OF INFLUENTIAL GENE CANDIDATES IN

PARENTAL LINES AND EXPANDED LIST OF RILs

Independent expression analysis using qRT-PCR of three influen-

tial candidate genes in the top two genetic modules was signifi-

cantly phenotypically associated with the eight CHCs traits across

the 430 individuals subjected to both the qRT-PCR and GC analy-

sis as determined by canonical correlation analysis. Canonical cor-

relation analysis allows the variation among individuals in gene

expression to be associated with the variation among the same in-

dividuals in CHC phenotype. Because there were three candidate

genes, only three dimensions (canonical variates) of candidate

gene expression could be associated with CHC phenotype (eight

dimensions), All three testable dimensions displayed a significant

association between gene expression and CHCs (F24,1183.9 = 5.08,

P < 0.0001; F14,818 = 3.61, P < 0.0001; F6,410 = 2.70, P = 0.014).

Because 10 replicate individuals from each of the 41 RILs were

included in this experiment, a genetic correlation between candi-

date gene expression and CHC phenotype could be estimated for

each of the three pairs of canonical variates. The variance compo-

nent correlation at the among-RIL level in a multivariate mixed

model was estimated using REML, and genetic correlations were

tested for significance from zero using a log likelihood ratio test.

The presence of significant genetic correlations for each of the

pairs of canonical variates (rG = 0.592, χ1 = 15.45, P < 0.001;

rG = 0.383, χ1 = 5.97, P = 0.015; rG = 0.316, χ1 = 3.73, P =
0.053), confirmed the genetic association between the expression

of these three genes and the variation in CHC expression.

Discussion
We have shown that a multivariate approach to the genetic anal-

ysis of high-dimensional transcript abundances successfully iso-

lates genetically independent sets of co-regulated transcripts that

in turn are genetically correlated with the major morphological

changes that have occurred through selection. The nature of regu-

latory changes during adaptation is controversial, with the impor-

tance of different regulatory mechanisms (Hoekstra and Coyne

2007), and the extent of pleiotropic regulatory control (Skelly

et al. 2009) is unclear. The genetic variation that segregates among

the RILs in the 82 transcripts that displayed the greatest levels of

genetic variance was explained by a small number of genetic mod-

ules. Although most of the genetic variation in single transcripts

segregated in a pattern that superficially resembled single biallelic

loci, 97% of this genetic variation was accounted for by only 12

genetically independent modules. In addition, only the first two of

these modules were required to explain 50% of the total genetic

variance in the 82 transcripts.

The overriding impression of changes in gene regulation in

response to reinforcing selection on the CHCs is that the vast
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majority of regulatory changes are likely to have occurred as a

consequence of divergence in a small number of trans-regulatory

loci or through a limited number of cis-regulatory changes for

physically linked genes. Recent global expression QTL (eQTL)

mapping studies have indicated that a very large number of eQTL

may underlie variation in gene expression and that multiple eQTL

often affect each transcript, but that the proportion of variation

accounted for by each eQTL is very low (West et al. 2007). Our

multivariate analysis suggests that such numerous eQTL may

either play only a very minor role during a response to selection,

or alternatively may simply be overestimated as a result of the

highly correlated nature of expression phenotypes (Kadarmideen

et al. 2006).

Although a large number of transcripts have diverged be-

tween the parental lines of the two populations, relatively few

transcripts were strongly affected by the genetic modules uncov-

ered by our multivariate approach. These influential transcripts

had a diverse range of putative functions. This array study and

others like it (Civetta et al. 1998; McGraw et al. 2004; Mackay

et al. 2005; Edwards et al. 2009;) are revealing novel functional

roles for genes in complex behaviors, such as mating, whose

function has, previously only, narrowly been defined by annota-

tion or mutational analysis. A key future question to address is

whether the large number of minor changes in expression play

a functional role in an adaptive event, or if much of this elab-

orate co-regulation may represent nonadaptative (or even dele-

terious) pleiotropic consequences (Lynch 2007) of the putative

trans-regulatory genotypes that underlie each independent genetic

module. A response to selection is almost always accompanied by

deleterious correlated responses to selection in unselected traits

(Falconer and Mackay 1996), and such elaborate co-regulation

provides one mechanism that could explain the almost ubiquitous

nature of this observation.

A highly pleiotropic model of gene regulation as an explana-

tion for the modules that have responded to selection is consistent

with the role ascribed to regulatory networks in the evolution of

animal form (Carroll 2008). It should be emphasized however

that it is unlikely that either a cis-regulatory change at a single

locus defines a module, or that such modules act on completely

independent regulatory networks. Modules segregated in a fash-

ion consistent with combinations of genotypes at more than one

locus contributing to each module, and expression of the same

transcript was governed by a number of different, genetically in-

dependent modules. These patterns suggest that epistatic interac-

tions between loci controlling gene regulation (West et al. 2007;

Gjuvsland et al. 2007) may be an important component of the

adaptive response. Phenotypic differences generated by the inter-

action between specific genotypes have been shown to be associ-

ated with expression differences in a large number of transcripts

(Dworkin et al. 2009). Unfortunately, our experimental design

precludes a statistical partitioning of the potential effects of such

interactions as additive and epistatic effects are confounded in the

variance component estimates from our RILs.

The genetic dimensionality underlying multiple phenotypes

is a vital component to understanding how populations respond

to selection and the mechanisms by which genetic variation is

maintained in natural populations (Walsh and Blows 2009). With

the advent of new statistical approaches to the analysis of high-

dimensional phenotypes, it is becoming clear that the number of

phenotypes that can be measured on organisms far exceeds the

number of independent genetic factors that explain the genetic

variation in these phenotypes (Walsh and Blows 2009). Systems

genetic analysis of extreme high-dimensional gene expression

data is likely to continue to suffer from computational limitations

associated with the application of restricted maximum likelihood

based mixed-model approaches (Kadarmideen et al. 2006). The

approach presented here provides a way of obtaining insights

into the modular genetic control of complex changes in gene

expression without the need for mixed-model convergence for

such high-dimensional problems (Hine and Blows 2006).
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